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1 Executive Summary  
Estimates of cost and schedule duration of a task or project are uncertain values, so we do 
not know the exact, discrete values until it is complete.  Given the inherent uncertainty of 
estimates, the only way to portray them is with probability distributions of possible costs 
and schedule durations (or dates).  Probabilistic cost and schedule distributions for a 
program are quantified through the means of cost and schedule uncertainty analyses.  The 
most popular way these analyses are performed is though statistical simulation.  Statistical 
simulation (i.e., Monte Carlo and Latin Hypercube sampling) techniques are widely used 
in cost and schedule risk analysis, but they have limitations. 

Analytic methods of cost and schedule risk analysis exist that: 1) correctly model random 
variables (RVs); 2) exactly correlate RVs and their sums, which many statistical simulation 
tools cannot; 3) have no fundamental limit to the number of RVs or correlation coefficients 
that can be defined; 4) provide [near] instantaneous results; and 5) have the ability due to 
their mathematical form to clearly indicate uncertainty drivers and thus the risk.  

This report presents an analytic (i.e., a non-simulation based) method of quantitative cost 
and schedule risk analysis building on analytic techniques of applied probability and 
statistics.  The analytic method provides near-instantaneous results with exact statistics 
such as mean and variance of total cost and total schedule duration.   It capitalizes on the 
fact that the structure of estimates defines a mathematical problem to be solved through the 
use of applied probability.  This report provides the mathematics required to perform the 
tasks of calculating the uncertainty of an estimate, and determining the risk from this 
uncertainty and a point estimate.   

While much of the mathematics of applied probability used in this report are publicly 
available through journal publications, the author has derived methods and formulae that 
have, to his knowledge and through his research, never been published before.  Therefore, 
the report provides a very unique set of mathematics useful in the analytic assessment of 
cost and schedule uncertainty and risk. 

The report includes several quantitative examples, including two example estimates, where 
the results obtained using the analytic method compare well with those results obtained 
through statistical simulation.  Given the excellent results obtained through this research, 
additional applications of the analytic method are recommended for use in risk analysis, 
estimating relationship development, and probabilistic cost and schedule estimating. 
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2 Introduction 
This report describes an analytic method of applied probability analysis techniques 
germane to problems encountered in cost and schedule risk estimation.  By their very 
nature, estimates are uncertain projections of future events.  Given that, we discuss the 
probabilistic nature of estimates and describe the mathematical problems encountered in 
cost and schedule estimating.  We discuss the mathematical tools that can be used to solve 
these problems (i.e., statistical simulation and statistical analysis) and we compare the two 
approaches.  The next sections of the report provide the tools required to perform statistical 
analysis.  Finally, we provide two sample problems to demonstrate analytical techniques.  

2.1 Probabilistic	Nature	of	Estimates	
Cost and schedule estimating is an integral part of the program management process.  
Organizations use these estimates for planning purposes such as cost/performance tradeoff 
studies, benefit/cost analyses, source selections, and budget planning.  But estimates are 
predictions and their exact values are uncertain in nature since they have not yet become 
“fact”.  Since the true cost and schedule durations of a project (or task) are only known 
when it is complete, the best we can do is to rely on estimates at various stages of planning 
and completion. 

The word “estimate” itself implies uncertainty, so an estimate is not well represented by a 
single number but by a distribution of possible estimates.  The distribution of possible 
estimates is defined by the estimate’s probability distribution that is calculated through the 
application of probability and statistics.  

2.2 Uncertainty	and	Risk	
Uncertainty is a measure of the distribution of possible outcomes of a random variable, 
such as cost and schedule estimates.  This distribution is called a probability distribution 
and can either be a continuous, discrete, or mixed distribution.1 

2.2.1 Probability	Density	and	Probability	Mass	
Probability distributions defined for continuous distributions are probability density 
functions (PDFs).  PDFs such as the one shown in Figure 2-1 can be expressed in terms of 
a mathematical formula of	 ௑݂ሺݔሻ, where ௑݂ሺݔሻ	is the PDF defined over the range, ݔ.  

                                                 

1 A “mixed distribution” is a combination of discrete and continuous distributions. 
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Figure 2-1 Probability Density Distribution 

Probability distributions of discrete risks (which are discontinuous functions) are defined 
by probability mass functions (PMFs) such as the one shown in Figure 2-2.  We will define 
the PMF as	݃௑ሺݔሻ, where ݃௑ሺݔሻ	is the function defined over the range	ݔ.  

 

Figure 2-2 Probability Mass Distribution 

2.2.2 Cumulative	Probability	
The cumulative probability is the probability that a real valued random number will be less 
than some value	ݔ.  In the case of discrete distributions, it is the sum of the probability-
weighted values of the PMF less than	ݔ, and in the case of continuous distributions, 

(remembering our college calculus) it is the integral of the PDF from –∞ to	ݔ.   
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2.2.3 Definition	of	Risk	
Any point estimate has some probability that it will be sufficient or be exceeded (Figure 
2-3). The probability that an estimate will be exceeded (i.e., overrun) is the risk, and the 
probability that the estimate will be sufficient (and that there is a probability of the actual 
value being lower) is the opportunity or reward.   

 

Figure 2-3 Risk, Reward and the Point Estimate 

Since the entire area under the PDF shown in Figure 2-3 is, by definition, equal to one, the 
sum of the probabilities of overrun (risk) and under-run (reward or opportunity) is also 
equal to one.  The probability of risk occurrence is the area of the distribution to the right 
of the point estimate and the probability of reward is the area to the left.  As stated earlier, 
the area of the distribution under a curve can be computed using the definite integral 
expression bounded by the lower and upper limits.  Therefore, risk is the integral of the 
PDF from the point estimate, c, to infinity (∞ሻ. 

݇ݏܴ݅  ൌ ׬ ௑݂ሺݔሻ݀ݔ
ஶ
௖ ൌ 1 െ ׬ ௑݂ሺݔሻ݀ݔ

௖
ିஶ ൌ 1 െ   .௑ሺܿሻܨ

 

2-1

Reward or opportunity represents the area under the curve from െ∞ to c, which is  

݀ݎܽݓܴ݁  ൌ ׬ ௑݂ሺݔሻ݀ݔ
௖
ିஶ ൌ   .௑ሺܿሻܨ

 

2-2

If we are using discrete risks defined by PMFs, then the risk equation is a summation of all 
of the probability-weighted risk consequences at all points x (i.e., costs or schedule 
durations) (Garvey P. R., 2000) greater than our point estimate,	ܿ.2 

݇ݏܴ݅  ൌ ∑ ௑ܲሺݔሻ௫வ௖ .  2-3

                                                 

2 Garvey, P. R. (2000). Probability Methods for Cost Uncertainty Analysis: A Systems Engineering 
Perspective. New York, NY: Marcel Dekker. 
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The amount of risk to an estimate is defined by two things: the uncertainty of the estimate 
and the point estimate, or the bet.  To illustrate the interaction of risk with uncertainty and 
the bet, consider the four examples in Figure 2-4.  Figure 2-4a. is a low-uncertainty, high-
risk estimate since the area under the PDF to the right of the bet is much larger than that to 
the left.  This means there is a disproportionate amount of risk compared to opportunity.  
In in Figure 2-4b, the risk is reduced by choosing a bet further to the right in the PDF.  
Note that in both of these cases, the potential low- and high-end outcomes remain the same 
– only the bet is changed. When the low bet is accompanied by a larger estimate 
uncertainty, as in in Figure 2-4c, the risk is reduced, but the potential impacts due to high-
end outcomes (consequences) are increased.  Finally, moving the bet to the right in the 
high uncertainty case, the risk is reduced as shown in in Figure 2-4d, but the potential for 
extreme high-end outcomes remains. 

 

Figure 2-4 Relationship between Risk, Uncertainty and the Bet 

2.3 Joint	Probability	Distributions	
So far we have discussed the univariate3 probability distributions of single random 
variables (i.e., estimates of cost or schedule).  When we are interested in the probability 
distribution of more than one random variable, we are interested in the multivariate 
probability distributions, such as the probability of achieving a particular cost and schedule 
of a yet-to-be-completed project.  When the relationships between variables such as 
estimated cost and schedule must be considered, we need to form a joint probability 
distribution.  An example of this is shown in Figure 2-5.  
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Figure 2-5 Joint Probability Density Function 

If we have two random variables ܺ and	ܻ, we can define the probabilities  

 ܲሼܺ ൑ ሽݔ ൌ ሻݔ௑ሺܨ ൌ ׬ ሻݖ௑ሺܨ
௫
ିஶ   ݖ݀

ܲሼܻ ൑ ሽݕ ൌ ሻݕ௒ሺܨ ൌ ׬ ሻݖ௒ሺܨ
௬
ିஶ    ݖ݀

 

2-4

The joint probabilities of ܲሼܺ ൑ ,ݔ ܻ ൑  ሽ can be expressed as the joint distributionݕ
function 

 ܲሼܺ ൑ ,ݔ ܻ ൑ ሽݕ ൌ ,ݔ௑௒ሺܨ ሻݕ ൌ ׬ ׬ ௑݂௒ሺݖ, ሻݓ
௫
ିஶ ݓ݀ݖ݀

௬
ିஶ   

 

2-5

The joint PDF is defined as the partial derivative of ܨ௑௒ሺݔ,  .ݕ	and	ݔ ሻ with respect toݕ

 
௑݂௒ሺݔ, ሻݕ ൌ

డమி೉ೊሺ௫,௬ሻ

డ௫డ௬
  

 

2-6

	

2.3.1 Marginal	Distributions	
The marginal distributions of a joint probability function are those distributions that are 
considered individually.  Given a joint distribution of two random variables, the marginal 
distribution of one is its probability distribution averaged over the probability information 
from the other’s distribution. 

2.3.2 Conditional	Distributions	
A conditional distribution of a joint probability function is the distribution of one random 
variable given a specific value of the other distribution(s). 
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2.4 Statistics	of	a	Random	Variable	

2.4.1 Moments	
Moments provide useful information about the characteristics of a random variable,	ܺ,  
such as the measures of central tendency, dispersion and shape.  When referring to the 
moments of a distribution or a set of data, it is useful to define which of the three types of 
moments are being used: raw moments, central moments or standardized moments. 

2.4.1.1 Raw Moments 
The kth moments about the origin are called “raw moments” of a PDF,	 ௑݂, and are defined 
as: 

 
௞ߤ
ᇱ ൌ ቊ

∑ ሻ௑ݔ௞݂ሺݔ ; ݂݅ ܺ ݏ݅ ݁ݐ݁ݎܿݏ݅݀

׬ ݔሻ݀ݔ௞݂ሺݔ
ஶ
ିஶ ; ݂݅ ܺ ݏ݅ ݏݑ݋ݑ݊݅ݐ݊݋ܿ

   

 

2-7

The mean,	ߤଵ
ᇱ 	, is the first raw moment of ܺ	about the origin, and it is a measurement of the 

central tendency of the data. We are more familiar with the mean being represented as,	ߤ, 
so we will use this notation for the mean hereafter.  

2.4.1.2 Central Moments 
Central moments of a distribution are the raw moments about the mean,	ߤ.  The first 
central moment is by definition zero, but the second central moment is the variance,	ߪଶ, 
which is a measure of dispersion about 	ߤ.  Equation 2-8 provides the definition of the kth 
central moments of discrete and continuous RVs.  

 
ଶߪ ൌ ቊ

∑ ሺݔ െ ሻ௑ݔሻଶ݂ሺߤ ; ݂݅ ܺ ݏ݅ ݁ݐ݁ݎܿݏ݅݀

׬ ሺݔ െ ݔሻ݀ݔሻଶ݂ሺߤ
ஶ
ିஶ ; ݂݅ ܺ ݏ݅ ݏݑ݋ݑ݊݅ݐ݊݋ܿ

  

 

2-8

The variance,	ߪଶ, is the square of the standard deviation, ߪ. 

The first five central moments expressed in terms of the raw moments are: 

ଵߤ  ൌ 0   2-9 
ଶߤ  ൌ െߤଵ

ᇱ ଶ ൅ ଶߤ
ᇱ ൌ ଶߤ

ᇱ െ ଵߤ
ᇱ ଶ 2-10

ଷߤ  ൌ ଵߤ2
ᇱ ଷ െ ଵߤ3

ᇱ ଶߤ
ᇱ ൅ ଷߤ

ᇱ   2-11
ସߤ  ൌ െ3ߤଵ

ᇱ ସ ൅ ଵߤ6
ᇱ ଶߤଶ

ᇱ െ ଵߤ4
ᇱ ଷߤ

ᇱ ൅ ସߤ
ᇱ   2-12

ହߤ  ൌ ଵߤ4
ᇱ ହ െ ଵߤ10

ᇱ ଷߤଶ
ᇱ ൅ ଵߤ10

ᇱ ଶߤଷ
ᇱ െ ଵߤ5

ᇱ ସߤ
ᇱ ൅ ହߤ

ᇱ   
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2.4.1.3 Standardized moments  
Standardized moments are the kth central moments,	ߤ௞, normalized by the kth powers of the 

standard deviation ߪ௞ (i.e., 
ఓೖ
ఙೖ

). 
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The most well-known standardized moments are skewness and kurtosis.  Skewness, ߴ, is 
the measure of asymmetry of 	ܺ and is defined as the third standardized moment: 

ሺܺሻݓ݁݇ݏ  ൌ ߴ ൌ ఓయ
ఙయ

  

 

2-14

A distribution is a) symmetric if ߴ ൌ 0	, b) left (i.e. negatively) skewed if ߴ ൏ 0	, and c) 
right (i.e., positively) skewed if ߴ ൐ 0	as shown in Figure 2-6.   

 

Figure 2-6 Left and Right Skewed Distributions 

Kurtosis is the fourth standardized moment.   Most textbooks define kurtosis of symmetric, 
unimodal distributions as a measure of peakedness of a distribution	ܺ.  This is a correct 
definition, however a more descriptive definition of kurtosis exists (DeCarlo, 1997), 
(Moors, 1986), (Balanda & MacGillivray, 1988), and (Darlington, 1970).4, 5, 6, 7 Moors 
defines kurtosis as the measure of the dispersion around the two “shoulders” of a  
distribution located at ߤ േ  DeCarlo warns that the classical attribution of peakedness of  .ߪ
a distribution vice its “fat-tailedness” is not a good representation of the meaning of 
kurtosis and provides examples where this is the case.8 

ሺܺሻݐݎݑ݇  ൌ ఓర
ఙర
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A more commonly used metric is the “excess kurtosis”, which is	݇ݐݎݑሺܺሻ െ 3.  Since the 
kurtosis of a normal distribution is equal to three, the excess kurtosis denoted as	ߢ, is 
adjusted by 3 as in Equation 2-16.  

ߢ  ൌ ሺܺሻݐݎݑ݇ െ 3 ൌ ఓర
ఙర
െ 3  

 

2-16

In general, where a) ߢ ൌ 0 the distribution is mesokurtic, b) ߢ ൐ 0  it is leptokurtic, and c) 
ߢ ൏ 0 it is platykurtic. 

                                                 

4 DeCarlo, L. (1997). On the meaning and use of kurtosis. Psychological Methods, 292-307. 
5 Moors, J.J.A. The meaning of kurtosis: Darlington reexamined. Amer. Statist.1986, 40, 283-284. 
6 Balanda, K.P.; MacGillivray, H.L. Kurtosis: A critical review. Amer. Statist.1988, 42, 111-119. 
7 Richard B. Darlington. Is Kurtosis Really "Peakedness?". Amer. Statist. 1970, 24, 19-22. 
8 DeCarlo, L. (1997). 
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Figure 2-7 Excess Kurtosis of Distributions 

2.4.1.4 Moment Summary 
The moments describing the characteristics of a random variable such as the measures of 
central tendency, dispersion and shape (i.e.,	ߤ, ,ଶߪ ,ߴ  can be derived from the raw (ߢ
moments	ߤ௞

ᇱ 	of	ܺ.  We will capitalize on these relationships in the analytic method 
proposed in this report. 

2.4.2 Quantile	Statistics	
Quantiles are a set of divisions of data into groups containing equal numbers of 
observations.  We are most familiar with percentiles, which are division of the data into 
100 groups of 1% of the cumulative area under a PDF.  We will denote the percentile,	ݍ, of 
a random variable,	ܺ, as	ܺ௭ୀ௤.  For example the 50th percentile of ܺ would be 

written	ܺ௭ୀ଴.ହ. 

2.4.3 Expectation	Operator	
The expectation operator,	ܧሾ∙ሿ, of a random variable is a powerful expression.  The 
expected value, or	ߤ, (Equation 2-17) of a random variable is perhaps the most important 
single parameter in applied probability.  It is written as 

ሾܺሿܧ  ൌ  , ௑ߤ
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and is the integral 

ሾܺሿܧ  ൌ ׬ ݔ ௑݂ሺݔሻ݀ݔ
ஶ
ିஶ , where ௑݂ሺݔሻ is the PDF of ܺ.   
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The mean represents the center of gravity of the random variable.  Another important 
parameter is	ߪଶ, defined by the expectation of the squared difference of the PDF and its 
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mean.  This quantity represents the moment of inertia of the probability masses (Papoulis, 
1965).9 

ሺܺሻݎܸܽ  ൌ ଶߪ ൌ ሾሺܺܧ െ ሻଶሿߤ ൌ ׬ ሺܺ െ ሻଶߤ ௑݂ሺݔሻ݀ݔ
ஶ
ିஶ   
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What is most important about ܧሾ∙ሿ is its ability to determine the raw moments (Equations 
2-7 and 2-18) and central moments (Equations 2-8 and 2-19) of a random variable, and 
thus the measures of central tendency, dispersion and shape (i.e.,	ߤ, ,ଶߪ ,ߴ  .(ߢ

2.4.4 Order	Statistics	
Order statistics are those statistics that describe the numerical order in which random 
variables or samples of random variables appear.  Some of the simplest order statistics are 
the minimum and maximum values defining the range of a PDF.  Other, more complex 
order statistics are those which describe the maximum and minimum of a series of random 
variables.  Order statistics play an especially important role in schedule risk analysis 
whereby the maximum probabilistic end dates of certain tasks define the maximum 
probable end-date of the schedule.   

2.5 Section	Summary	
The mathematics of the analytic techniques used to solve estimating uncertainty problems 
require definition of the estimating problems germane to cost and schedule estimates.  In 
the next section, we discuss the mathematical problems typically found in cost and 
schedule estimating.  

  

                                                 

9 Papoulis, A. (1965). Probability, Random Variables and Stochastic Processes. New York, NY: McGraw 
Hill. 
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3 Cost and Schedule Estimates 
Cost and schedule estimates are defined by a set of mathematical formulae that lend 
themselves to probabilistic uncertainty analysis.  In this section, we will discuss the 
structures of these types of estimates and define the mathematical problem(s) to be solved 
in probabilistic uncertainty analysis. 

Book10,11 (1994; 2002) showed the cost and schedule estimating communities that every 
cost and schedule estimating problem should be treated as a risk analysis, not simply an 
exercise in summing most likely costs – the result of which is a number that has no 
statistical meaning without risk analysis.  Furthermore, he showed estimates should be 
treated as random variables and not deterministic numbers (i.e., constants). 

3.1 Nomenclature	
To better describe the mathematical problems germane to cost and schedule estimates, we 
will define constants, variables, and random variables. 

A numerically expressed entity is called a “constant” if there is a unique specific number 
that is always its numerical value (e.g.,	2- ,1.414 ,ߨ).  A numerically expressed entity is 
called a “variable” if there are several possible specific numbers that may serve as its 
numerical value and which specific number happens to be its numerical value in any 
particular situation depends on the particular circumstances (e.g., ݖ ,ݕ ,ݔ)12.  A variable is 
further denoted a “random variable” if the proportion of particular situations in which any 
specific number happens to be its numerical value is established by a probability 
distribution (e.g., ܺ, ܻ, cost, schedule duration). 

We will use the following notation throughout this document to define variables.  
Constants will be defined using their numerical value or lowercase letter (e.g.,	ܽ, ܾ, ܿ, ݀, ݁).  
Variables will use lowercase letters	ݑ, ,ݒ ,ݓ ,ݔ ,ݕ and	ݖ, and random variables will use 
uppercase letters	ܷ, ܸ,ܹ, ܺ, ܻ	and	ܼ.  Random variables defined by commonly used PDFs 
will use the following notation: 

Uniform:  ௑݂ሺݔ; ,ܮ ሻܪ ൌ ܷሺܮ, ሻ   3-1ܪ
Triangular: ௑݂ሺݔ; ሻܪ,ܯ,ܮ ൌ ܶሺܪ,ܯ,ܮሻ   3-2
Normal:  ௑݂ሺݔ; ,ߤ ሻߪ ൌ ܰሺߤ, ሻ 3-3ߪ
Lognormal:  ௑݂ሺݔ; ,ߤ ሻߪ ൌ ,ߤሺܮ ሻ 3-4ߪ
Beta:  ௑݂ሺݔ; ,ߙ ,ߚ ܽ, ܾሻ ൌ ,ߙሺܤ ,ߚ ܽ, ܾሻ 3-5
Where 

                                                 

10 Book, S. A., “Do Not Sum ‘Most Likely’ Cost Estimates”, 1994 NASA Cost Estimating Symposium, 
Johnson Space Center, Houston, TX, 8-10 November 1994. 
11 Book, S. A., “Schedule Risk Analysis: Why It is Important and How to Do It”, Ground Systems 
Architectures Workshop, The Aerospace Corporation, El Segundo, CA, 13-15 March 2002. 
12 Book, S. A., 1994. 
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L, M, H are low, most likely (mode), and high shape parameters 
,ߤ  are the mean and standard deviation of the distribution in unit space ߪ
α, β are standard beta distribution shape parameters 
a, b are lower and upper bounds of the four-parameter beta distribution 

 
The properties of these distributions are provided in Appendix A – Probability 
Distributions. 

3.2 The	Cost	Estimating	Problem	
The cost estimating problem is defined by the mathematics of the following: 1) the work 
breakdown structure (WBS), which requires multiple levels of statistical summation; and 
2) the mathematics most applicable to the estimating approach(es) used (i.e., bottom-up, 
analogy, parametric).  We will first describe the statistical techniques used to perform 
statistical summation of a WBS structure and then discuss, in more depth, how to apply 
analytic uncertainty and risk analysis to the individual WBS elements. 

3.2.1 WBS	structure		
The WBS defines the summation hierarchy of the project.  In other words, it defines the 
mathematical problem of summation of individual WBS elements to successively higher 
levels of the WBS up to the total project level.  The statistical treatment of summing 
correlated random variables is fairly straightforward and can be easily programmed into a 
spreadsheet or cost estimating tool (Young, 1992).13 

3.2.2 Estimating	Methods	
The methods used to estimate costs at different WBS levels define another part of the 
mathematical problem to be solved.  Different estimating methods require different 
mathematical procedures, so we will examine these methods individually and note the 
important mathematical features of each. These include bottom-up, analogy approach 
relying on scaled actuals, multiple scaled actuals, and cost estimating relationships (CERs). 

3.2.2.1 Bottom-up 
The bottom-up estimating approach relies on summing a detailed list of the classical 
elements of cost: labor (effort), material and expenses.  If a detailed, resource-loaded 
schedule is used to estimate effort, then the duration of the task, the staffing level and the 
associated labor rates can be represented by random variables.  As an example, the cost of 

                                                 

13 The “Formal Risk Assessment of System Cost Estimates” (FRISK) method is an analytic risk model that 
uses “Method of Moments” to calculate summary distributions.  FRISK was originally developed by Phil 
Young of The Aerospace Corporation in 1992 (before Crystal Ball and @Risk became available) with 
funding from USAF SMC.  A BASIC Program implementing FRISK was developed by Dr. Stephen Book 
and enjoyed many years of use.  FRISK has been reprogrammed in Excel by various analysts since 2000, 
with each new version providing more advanced capability and features and ease of use. 
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the effort for a particular task is the product of the task duration, the resource loading 
profile and the associated labor rates.  Each is treated as a random variable. 

ܹ ൌ 	ܻܼܺ; where  
ܹ = effort, measured in dollars 
ܺ = duration of the task, measured in hours 
ܻ = resource loading, measured in heads  
ܼ = the labor rate, measured in dollars per hour per head 
 

In this case, the first mathematical problem to be solved is the multiplication of multiple 
(and perhaps correlated) random variables. This will be discussed in Section 5.  The 
second problem is the summation of the elements of cost represented by random variables 
for each WBS element, as discussed in Section 4.2.2. 

3.2.2.2 Analogy (Scaled Actuals) 
The analogy method relies on using an actual cost of a product or service to estimate the 
cost of a similar product or service. Intuitively, it is the easiest method to use when 
preparing a cost estimate.  The simplest form of an analogy estimate is a direct analogy, in 
which case the estimated cost is equated to the actual cost of the similar product or service.  
Unfortunately, this simple procedure does not provide any information about the 
uncertainty of the estimate.  Indeed, the analogy can be the most misleading estimating 
method from a probability perspective. 

Studies (MacKenzie & Addison, 2000) by the Space Systems Cost Analysis Group 
(SSCAG) have shown the standard deviation of the costs of similar items at the “box level” 
of the WBS to be as much as 30% to 40%.14 In the same report, the authors showed the 
data to be lognormally distributed, which provides a shape to the distribution.  Given this 
information, we are able to derive a measure of the standard deviation of the “actual” cost 
based on the coefficient of variation (ܸܥ ൌ  but we do not know at which percentile ,(ߪ/ߤ
to place our particular analogy.  Is it at the 50th percentile (median), the mode, the mean 
(expected value), or is it at some other percentile such as the 4th or the 85th, or somewhere 
else?   If it is at the mean, then the PDF of the analog is easily determined.  But, is this the 
right PDF to use in this situation? Figure 3-1 shows an example lognormal distribution 
based on the mean and	ܸܥ ൌ ,ሺ100ܮ ,0.3 30ሻ.   

                                                 

14 MacKenzie, D. and Addison, B., “Space System Cost Variance and Estimating Uncertainty”, 70th SSCAG 
Meeting, Boeing Training Center, Tukwila, WA, October 12-13, 2000. 
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Figure 3-1 PDF of Cost of Analogy at Mean 

Now consider the case where the analogy is one cost of many possible costs within an 
unknown probabilistic range.  To provide a distribution about the analogous cost, we need 
to either 1) assume a percentile value for the analogy within a prescribed distribution, or 2) 
determine the (yet unknown) probabilistic range of possible values to which the analogous 
cost belongs.  The first case is described by Flynn, Braxton, Garvey and Lee (2012).15  The 
second case requires the use of applied probability to determine the probability 
distribution.  The derivation for this approach is provided in Appendix C – Derivations. 

3.2.2.3 Scaled Actuals (Factor) 
If a simple factor is used to scale an actual cost, then the mathematical problem is the 
multiplication of random variables, where one random variable is the scaling factor and the 
other is the PDF of the analogy, described in Section 3.2.2.2. 

3.2.2.4 Scaled Actuals (Interpolation) 
When we estimate the cost of an item through linear interpolation of two actuals using a 
cost driver (i.e., weight), the mathematical problem is a linear relationship: 

௘ܻ ൌ ଵܻ ൅ ሺܺ௘ െ ଵሻݔ ∗
ሺ௒మି௒భሻ

ሺ௫మି௫భሻ
, where  3-6

௘ܻ= the cost estimate (random variable) 
ܺ௘ = the cost driver of the item we are estimating (a random variable) 
ଵܻ, ଶܻ = the costs of the two actuals, (random variable) 
,ଵݔ  ଶ = the cost drivers of the two actuals (constant)ݔ

 

                                                 

15 Flynn, B., Braxton, P., Garvey, P., & Lee, R. (2012). Enhanced Scenario-Based Method for Cost Risk 
Analysis: Theory, Application and Implementation. 2012 SCEA/ISPA Joint Annual Conference & Training 
Workshop. Orlando, FL. 
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The plot of the discrete interpolation problem is shown in Figure 3-2. 

 

Figure 3-2 Discrete Variable Interpolation 

The mathematical problems to be solved in Equation 3-6 are the addition, subtraction and 
multiplication of random variables. 

Note the costs of the two actuals have a similar issue as the direct analogy method whereby 
we cannot assume the a priori standard deviations of the samples.  If we cannot treat these 
samples of actual values as constants (no error) in the direct analogy case, then we 
shouldn’t treat them as such in the interpolation case. 

3.2.2.5 Multiple Scaled Actuals and Cost Estimating Relationships 
Multiple scaled actuals are those actuals that are similar in nature and whose costs can be 
represented by a probability distribution or by simple moments such as ߤ and	ߪ. For 
example, the costs of three-meter ground station antennas could be represented by a normal 
distribution,	ܰሺߤ,  ሻ.  Provided the antenna of interest fits into the set of three-meterߪ
ground station antennas represented by the PDF, we know the ߤ,  and confidence level of ,ߪ
each estimate in the range of the PDF. 

When we are estimating costs of products or services that are based on a similar set of 
parameters, we can develop a cost estimating relationship (CER) that explains some of the 
variations in cost based on variations in one or more independent variables (i.e., cost 
drivers). Consider the generic form of a recurring CER based on unit theory shown in 
Equation 3-7. 

ݕ  ൌ ൛ൣܽ ൅ ܾ	∑ ሺݑ௜௖ሻ
௅
௜ୀி ∏ ൫ݔ௝

ௗೕ൯ ∏ ሺ݁௞௦ೖሻ
ெ
௞ୀଵ

ே
௝ୀଵ ൧ൟߝ ; where  

ܽ, ܾ, ܿ, ݀, and	݁	are coefficients of the regression (ܿ ൌ ݈݊ଶሺܵܥܮ஼ሻ), 
 ,஼ = cumulative average learning curve slope when a = 0ܵܥܮ
  ,݅	௜ = unit numberݑ
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௝ = independent variableݔ ݆,  
ܰ = number of independent variables, 
 ,݇	௞ = indicator (“dummy”) variableݏ
 number of indicator variables, and = ܯ
 .percent standard error (multiplicative) = ߝ
 

The independent variables,	ݔ௝, can be represented by random variables ௝ܺ 	as can the 

multiplicative error of the estimate, ߝ.  The dependent variable,	ݕ, will also be a random 
variable, ܻ, defined by the PDFs of each independent variable, the functional 
transformation of the CER form, and the PDF of the multiplicative error, ߝ.  

The CER provides a model for constructing the PDF, so we can obtain the	ߤ,  and ,ߪ
confidence level of each estimate in the range of the PDF as in the case of multiple scaled 
actuals.  To compute the statistics of the CER, we must first learn how to convolve and 
transform random variables.  This is discussed in Sections 4 through 7. 

3.2.3 Discrete	Risks	
Analysts may need to include discrete risk events form a risk register (Table 3-1) in a cost 
or schedule estimate.  In the single risk case, this means there is a probability that some 
estimate of additional cost or schedule will be added.  With multiple risks, the problem 
becomes combinatoric, since we must account for any combination of risks that could 
potentially occur.   

Historical cost and schedule actuals contain realized risks which may or may not have been 
mitigated or manifested themselves into cost and schedule growth from the original 
proposed estimate.  By using historical actuals to form the estimating relationships, the 
resulting estimate 1) will appear more conservative than if it had been developed using 
engineering judgment or non-metric-based approaches; 2) will inherently contain schedule 
and cost risks typical of similar programs; and 3) will be more prone to double or even 
triple-counting risks when augmented with discrete cost and schedule risks from a risk 
register (Table 3-1).   

Table 3-1 Example Risk Register 

Risk ID Description Probability Impact Impact Area 
R1 Additional program management personnel 0.50 $200,000 Cost 
R2 Redesign of computer board 0.25 6 Months 

$75,000 
Schedule 
Cost 

R3 Parts failure 0.10 $250,000 
 

Cost 
Technical 

R4 Second vendor required 0.05 12 months Schedule 
Technical 

O1 Renegotiate subcontract 0.25 $100,000 Cost 
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To form a complete risk picture, additional cost-related risks identified by the schedule risk 
assessment (SRA) and the discrete risk analysis obtained from the risk and opportunities 
register (ROR) are included to form the risk profile of the program.  In many cases, the 
historical risk inherent in the use of estimating methods developed from actual data covers 
many potential risks (Figure 3-3).  In these cases, the analyst must identify unique risks 
and omit redundant risks (B and C) identified and represented in the SRA and ROR.  The 
use of more robust statistical and risk analyses minimizes the unidentified and untracked 
risks (A). 

 

Figure 3-3 Estimating Risk Venn Diagram 

3.3 The	Schedule	Estimating	Problem	
The schedule estimating problem is defined by the method used to estimate the schedule 
duration.  When scaled analogy or multiple scaled actuals or schedule estimating 
relationships (SERs) are used to estimate schedule duration, the mathematical problem to 
be solved is similar to those of cost estimating.  The two fundamental differences are: 1) 
probabilistic durations are measured in workdays, and 2) when the bottom-up approach is 
used, the schedule network defines the mathematical problem to be solved.  We will 
discuss the issues that arise when using workdays rather than calendar days and then 
discuss the issues arising from the arrangement of tasks in a network. 

3.3.1 Using	Workdays	in	a	Schedule	
When using workdays in a program schedule, probabilistic dates are expressed as discrete 
rather than continuous distributions.  This arises from the fact that a particular task may 
finish on a particular day (or part of a work day) but not all possible values within the 
range.  Consider the example of the duration of a task to be a continuous, uniform 
distribution defined as	ܷሺ1,2ሻ. The lower bound of the continuous distribution is defined 
as one day and the upper bound as two days.  Assuming a continuous distribution for the 
duration of the task, the finish date of the task will be within the range of one to two days 
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later.  In our example, the mean and standard deviation of the duration’s continuous 
uniform ܷሺܮ,  :ሻ distribution areܪ

௎ሺଵ,ଶሻߤ ൌ
௅ାு

ଶ
ൌ 1.5	days 

௎ሺଵ,ଶሻߪ ൌ ට ଵ

ଵଶ
ሺܪ െ ሻଶܮ ൌ ට ଵ

ଵଶ
ሺ2 െ 1ሻଶ ൌ ට ଵ

ଵଶ
ൌ 0.2887	days 

Since schedules (and scheduling software programs) use discontinuous working days (as 
opposed to continuous calendar days) to define start and finish dates, the probabilistic 
finish date will be one or two days after the start date, not anywhere within entire range of 
the distribution.  This phenomenon induces changes in the statistics of the finish date of the 
task and the overall distribution shape and statistics of the schedule.  If the duration is 
treated as a discrete uniform ܷܦሺܮ,  ,ሻ distribution with two (n=2) discrete days durationܪ
the statistics are: 

஽௎ሺଵ,ଶሻߤ ൌ
௅ାு

ଶ
ൌ ଵାଶ

ଶ
ൌ 1.5	workdays (wd) 

஽௎ሺଵ,ଶሻߪ ൌ ට൫ுିఓವೆሺభ,మሻ൯
మ
ାሺ௅ିఓವೆሺభ,మሻሻమ

௡
ൌ ටሺଶିଵ.ହሻమାሺଵିଵ.ହሻమ

ଶ
ൌ ටଵ

ସ
ൌ 0.5		wd 

Note the mean is unchanged, but the variance increases dramatically because the 
probability mass is equally distributed at the lower (L) and upper (H) bounds of the 
distribution.  The statistics take a more severe departure when evaluating the distribution in 
calendar days where one possible finish day may occur on a Friday and another on a 
Monday, assuming Saturday and Sunday are not workdays.  This translates into a 
distribution with two possible durations in calendar days with the statistics: 

஽௎ሺଵ,ସሻߤ ൌ
௅ାு

ଶ
ൌ ଵାସ

ଶ
ൌ 2.5	calendar days (cd) 

஽௎ሺଵ,ସሻߪ ൌ ට൫ுିఓವೆሺభ,మሻ൯
మ
ାሺ௅ିఓವೆሺభ,మሻሻమ

௡
ൌ ටሺସିଶ.ହሻమାሺଵିଶ.ହሻమ

ଶ
ൌ ටଵ

ସ
ൌ 1.5		cd 

We must take great care to properly define the appropriate units and respective shapes of 
durations or else we may be miscalculating the correct moments of the schedule durations, 
start dates and finish dates.  For this reason, probabilistic workdays are defined by 
continuous distributions, and calendar days are defined by discrete distributions. 

3.3.1.1 Converting Calendar Days to Workdays 
Scheduling software makes provisions for converting from a number of calendar days to 
workdays and vice versa.  A simple approximation that can be used is:  

ܿ݀	 ൌ 	 ሺ7/5	ሻ݀ݓ േ ߝ where ߝ ൌ 1 wd 3-8
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This conversion provides less than 1% error for date conversions over 10 wd as shown in 
Figure 3-4.  An equally useful approach when using Excel is to compute the finish date (in 
cd) using the WORKDAY() function, which calculates the finish date (in cd) using the start 
date (in cd) and duration (in wd).  The duration in cd (and the appropriate conversion 
factor from wd to cd) can be calculated by subtracting the finish date (in cd) from the start 
date (in cd). 

3.3.1.2 Expressing Durations and Dates as Random Variables 
When probabilistic schedule network tools use continuous distributions to define the 
probabilistic durations of tasks, they effectively transform the continuous distributions into 
discrete distributions binned into possible working days.  This discretization of continuous 
distributions scales the standard deviation of the task’s duration.  The conversion factor 
shown in 3-8 provides a good approximation of this scaling for standard deviations of 
durations over 25 wd as shown in Figure 3-4. 

 

Figure 3-4 Workday-to-Calendar Day Approximation Error 

3.3.2 Arrangement	of	Tasks	in	a	Network	
Schedule networks contain the task durations and the arrangement of those tasks with 
respect to each other.  There are four possible arrangements: serial, parallel, tree and 
feedback (Book S. A., 2011).16 

                                                 

16 Book, S. A., “Schedule Risk Analysis: Why It is Important and How to Do It”, 2011 ISPA/SCEA Joint 
Annual Conference & Training Workshop, Albuquerque NM, 7-10 June 2010. 
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3.3.2.1 Serial Arrangement 
In a serial arrangement, each task is arranged as a predecessor or a successor of another.   
Figure 3-5 shows a serial arrangement of tasks represented by boxes.  The number in each 
box indicates the duration (number of wd) allocated to the individual tasks.  The serial 
network’s critical path passes through all of the boxes, and its duration is the sum of the 
durations of the individual activities in the serial network.  The critical path, in this case, 
has a total duration equal to 32 wd. 

 

Figure 3-5 Serial Network (Book S. A., 2011) 

3.3.2.2 Parallel Arrangement 
In a parallel arrangement, two activities are “parallel” if neither is a predecessor or a 
successor of the other.  The critical path passes through those boxes whose combined 
duration is the longest possible through the network, not the sum of the durations of all of 
the individual tasks in the network.17  In Figure 3-6, the series of tasks on the top (the 
critical path) is outlined in solid lines and have a total duration of 32 wd; the series of tasks 
at the bottom is outlined in dashed lines and has a total duration of 27 wd.  

 

Figure 3-6 Parallel Network (Book S. A., 2011) 

3.3.2.3 Tree Structure 
A tree structure is a mixture of serial and parallel activities in a schedule network.  In 
Figure 3-7, the numbers in boxes indicate number of workdays allocated to the task 
represented by each box.  The critical path passes through those boxes whose combined 
duration is the longest possible through the network, not the sum of the durations of all of 
the individual tasks in the network.  The critical path, consisting of boxes outlined in solid 
lines, has a total duration = 25 wd.  The sequences of boxes outlined in dotted black lines 
have “slack time” of 3 wd, 8 wd, 21 wd, 5 wd and 1 wd, respectively. 

                                                 

17 The fundamental reason why “Earned Schedule” is an incorrect approach for estimating the expected 
duration of a program with parallel paths is that the total schedule duration is not equal to the sum of the 
individual task durations. 
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Figure 3-7 Tree-Structured Network (Book S. A., 2011) 

The critical path in this case is defined by the maximum of the path durations of each 
“branch” or path in the tree structure.  This is a fundamental difference between schedule-
analysis software and cost-analysis software.  The work breakdown structure is a “linear” 
list, and program cost is calculated by adding together the costs of all items on that list.  
The schedule network (unless it is entirely serial) is not linear, and therefore program 
duration cannot be calculated by adding together the durations of all activities in the 
network. 

3.3.2.4 Merging Tasks 
When parallel branches or tasks in a tree structure merge, the start date of their successor 
task is driven by the maximum of the end dates of the merging predecessor tasks.  The 
mathematical problem to be solved when dealing with probabilistic schedule analysis (i.e., 
probabilistic start dates, end dates and durations) where tasks merge is the calculation of 
the PDF of the maximum, ݉ܽݔሺ ௑݂ሺݔሻሻ, of the PDFs of merging tasks (Covert, Using 
Method of Moments in Schedule Risk Analysis, 2011).  This is the source of a 
phenomenon called “merge bias” which was first discovered in the early 1960s 
(MacCrimmon & Ryavec, 1962), (Archibald & Villoria, 1967) when a statistical approach 
was applied to schedule network analysis.18, 19 

3.3.2.5 Feedback Loop 
A feedback loop uses a series of feedback paths to define repeated paths such as repeated 
testing due to test failures and subsequent fixes.  In Figure 3-8, the numbers in boxes 
indicate the number of wd allocated to the task represented by each box.  The critical path 
passes through those boxes whose combined duration is the longest possible through the 
network.  If “feedback” is not exercised, the critical path, consisting of the boxes outlined 
in solid lines, has a total duration = 19 wd.  If “feedback” is exercised once, all boxes lie 
on the critical path, which then has total duration = 44 wd. 

                                                 

18 MacCrimmon, K. R., & Ryavec, C. A. (1962). An Analytical Study of the Pert Assumptions. Santa 
Monica, CA: RAND. 
19 Archibald, R. D., & Villoria, R. L. (1967). Network-Based Management Systems (PERT/CPM). New 
York: John Wiley & Sons. 
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Figure 3-8 Feedback Loop (Book S. A., 2011) 

3.3.2.6 Probabilistic Branching 
The feedback loop is difficult (and sometimes impossible) to model using commercially 
available scheduling software, and is often modeled using probabilistic branching 
techniques.  These techniques insert a series of tasks in a schedule network with a set of 
enabling “switches” based on the probability that these additional or repeated tasks will 
occur.  In Figure 3-9 , the probabilistic switches are indicated by circles (nodes) containing 
 .representing the probability of the path being exercised ,”݌“

 

Figure 3-9 Feedback Loop with Probabilistic Decisions 

Written in a non-recursive form, the additional, repeated tasks look like those shown in 
Figure 3-9. 

 

Figure 3-10 Feedback Loop with Probabilistic Branching 

Probabilistic branching requires us to know how to add probability-weighted schedule 
duration (a random variable) to a particular path’s duration (another random variable) 
(Covert, Using Method of Moments in Schedule Risk Analysis, 2011). 

3.3.3 The	Critical	Path	
The criticality index (ܫܥ) is the probability a particular task’s path will be on the critical 
path, or the probability one path will have a longer duration than the others. Where three 
parallel paths (ܤ ,ܣ and ܥ) with probabilistic end dates merge, there are three potential 
critical paths, each with its own ܫܥ, defined as: 

஺ܫܥ  ൌ ܲሺܣ ൐ ,ܤሺݔܽ݉    ሻሻܥ
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஻ܫܥ  ൌ ܲሺܤ ൐ ,ܣሺݔܽ݉    ሻሻܥ

஼ܫܥ  ൌ ܲሺܥ ൐ ,ܤሺݔܽ݉ ሻሻܣ
	

 

Generally, we can state the ܫܥ of path ܺ (ܫܥ௑) to be 

௑೔ܫܥ  ൌ ܲሺ ௜ܺ ൐ ሺݔܽ݉ ௝ܺஷ௜ሻሻ
	

3-9

Using the notation for the maximum of distributions to be X, then the probability that the 
end date of path A is greater than the maximum of paths B and C, P(A>X), which is the 
same as P(X<A), and therefore P(X-A<0).  We will need to know how to subtract two 
correlated random variables (the probabilistic durations of the individual paths in the 
network) to compute the CI (Covert, Using Method of Moments in Schedule Risk 
Analysis, 2011).20 

3.4 Mathematics	of	Estimates	
In Sections 3.2 and 3.3, we discussed mathematical problems to be solved when using a 
variety of cost and scheduling estimating methods.  The mathematical operations applied 
to random variables in which we are most interested are (Figure 3-11): addition and 
subtraction, multiplication and division, correlation between random variables, minimum 
and maximum, linear and nonlinear transformations, and discrete risks and probabilistic 
branching.  These operations between PDFs result in new PDFs with moments of their 
own, which we will use in the analysis.  What we have not discussed yet is the subject of 
correlation of random variables, which affects all of these operations. 

 

Figure 3-11 Mathematics of Random Variables 

                                                 

20 Covert, R. P. (2011). Using Method of Moments in Schedule Risk Analysis. Bethesda, MD: IPM. 
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3.4.1 Correlation	between	Random	Variables	
When performing operations on random variables we must have knowledge of how they 
behave with respect to each other, or covary.  Correlation is a statistical measure of 
association between two random variables and is specified by a correlation coefficient 
 It measures how strongly the random variables are related, or change, with each  .(௜,௝ߩ	)

other.  If two random variables tend to move up or down together, then they are said to be 
positively correlated.  If they tend to move in opposite directions, they are said to be 
negatively correlated. The most common statistic for measuring association is the Pearson 
(linear) correlation coefficient,	ߩ.  Another is the Spearman (rank) correlation coefficient, 
 ௌ, which is used in statistical simulation tools such as Crystal Ball and @Risk.  These twoߩ
definitions of correlation are different, and should not be confused to mean the same thing.  
Garvey (1999) pointed out that simulations relying on rank correlation do not correctly 
model the covariance of random variables.21   

Pearson product-moment linear correlation,	ߩሺܺ, ܻሻ, measures the extent of linearity of a 
relationship between two random variables.  It plays an explicit, well-defined role in 
establishing the sigma value (as well as the range) of the total-cost distribution as 
described by Book (1994).  For example: 

 ߩሺܺ, ܻሻ ൌ േ1 if and only if (iff) X and Y are linearly related, i.e., the least-squares 
linear relationship between X and Y allows us to predict Y precisely, given X 

 ߩଶሺܺ, ܻሻ = proportion of variation in Y that can be explained on the basis of a 
least-squares linear relationship between X and Y 

 ߩሺܺ, ܻሻ ൌ 0 iff the least-squares linear relationship between X and Y provides no 
ability to predict Y, given X 

The second type of correlation, called Spearman rank correlation, ߩௌሺܺ, ܻሻ, measures the 
extent of monotonicity of a relationship between two random variables.  Since it does not 
appear explicitly in the formulae for any of the mathematical operations for which we are 
concerned, its impact on sigma is not known.   

 ߩௌሺܺ, ܻሻ ൌ ൅1  iff the largest value of X corresponds to the largest value of Y , 
the second largest, ... , etc. 

 ߩௌሺܺ, ܻሻ ൌ െ1  iff the largest value of X corresponds to the smallest value of Y, 
etc. 

 ߩௌሺܺ, ܻሻ ൌ 0 iff the rank of a particular X among all X values.  In this case it 
provides no ability to predict the rank of the corresponding Y among all X values 

                                                 

21 Garvey, P. R. (1999). Do Not Use Rank Correlation in Cost Risk Analysis. 32nd DOD Cost Analysis 
Symposium. 
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Linear and rank correlations are different for different sets of pairwise data.  As an 
example, Figure 3-12 shows the linear and rank correlation coefficients for different plots 
of x and y variables.22 

 

Figure 3-12 Linear vs. Rank Correlation  

We discuss these two types of correlation because: 1) Pearson product-moment correlation 
is an essential element used to find the distributions formed by mathematical operations on 
random variables, 2) Spearman correlation is used nearly exclusively in statistical 
simulations and does not define covariance, and 3) we need to know the difference 
between them if we are interested in comparing analytical results to those produced by 
statistical simulations. 

3.4.2 Calculating	Correlation	Coefficients	
The correlation coefficient between lists of values of random variables, such as the 
multiplicative (or additive) error terms of CERs, can be calculated quite easily.  Previous 
papers by the author (2001), (2002), (2006) have demonstrated this application. 23, 24, 25  
The Pearson product-moment correlation between discrete values such as pair-wise CER 
residuals is calculated using Equation 3-10. 

 
௑,௒ߩ ൌ

∑ሺ ௜ܺ െ ௑ሻሺߤ ௜ܻ െ ௒ሻߤ

ඥ∑ሺ ௜ܺ െ ௑ሻଶߤ ∑ሺ ௜ܻ െ ௒ሻଶߤ
 

3-10

                                                 

22 Covert. R. P. (2011). Using Method of Moments in Schedule Risk Analysis. Bethesda, MD: IPM. 
23 Covert, R. P. (2001). Correlation Coefficients in the Unmanned Space Vehicle Cost Model Version 7 
(USCM 7) Database. 3rd Joint ISPA/SCEA International Conference. Tyson's Corner, VA. 
24 Covert, R. P. (2002). Comparison of Spacecraft Cost Model Correlation Coefficients. SCEA National 
Conference. Scottsdale, AZ. 
25 Covert, R. P. (2006). Correlations in Cost Risk Analysis. 2006 Annual SCEA Conference. Tysons Corner, 
VA. 
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where ܺ and ܻ are CER residual pairs,  
௜ܺ and ௜ܻ are individual program residual data, and  
 .௒ are the means of the residuals respectivelyߤ and	௑ߤ

 
If the two variables exactly follow a linear relationship (with no scatter), then the 
correlation coefficient ߩ௑,௒ = +1 or -1.  Similarly, if there is no correlation between	ܺ and 

ܻ, then the numerator should be zero, and ߩ௑,௒ ൌ 0. 

3.4.3 Correlation,	Dependence	and	Independence	
In the process of researching the analytic method presented in this paper, we found 
correlation can be induced between two vectors of sampled, uncorrelated variables ܺ and ܻ 
when one, the other, or both are transformed through a non-linear equation (i.e., a CER) 
form such as ݕ ൌ ܽܺ௕, or a triad type of CER, ݕ ൌ ܽ൅ܾܺ௖.  

Consider the two uncorrelated random variables ܷ and ܸ shown in Table 3-2.  We will 
introduce a linear transformation,	ܹ ൌ 2 ൅ 3ܷ, and two exponential transformations, 
ܺ ൌ ܷଶ and ܻ ൌ ܸଶ.  A linear transformation does not change the fundamental correlation, 
as seen in the correlation coefficients 	ߩ௎,ௐ and	ߩ௏,ௐ (Table 3-3).  Small amounts of 

correlation are induced by the exponentiation of the uncorrelated random variables U and 
V as seen in	ߩ௎,௒ ൌ െ0.0088, and	ߩ௏,௑ ൌ 0.1925.  Variables correlated with their squares 

show a decrease in their correlation from 1.0 as seen in 	ߩ௎,௑ ൌ 0.9811 and		ߩ௏,௒ ൌ
0.9990. 

Table 3-2 Transformed Random Variable Samples 

U  V W=2+3U X=U2 Y=V2

1  4.2 4 1 17.64

2  2.1 6 4 4.41

3  1.8 8 9 3.24

4  2.2 10 16 4.84

5  4.15 12 25 17.2225 

 

Table 3-3 Correlations between Transformed Random Variables  

  U  V W X Y 

U  1.0000  0.0000 1.0000 0.9811 ‐0.0088 

V  0.0000  1.0000 0.0000 0.1924 0.9990 

W  1.0000  0.0000 1.0000 0.9811 ‐0.0088 

X  0.9811  0.1924 0.9811 1.0000 0.1828 

Y  ‐0.0088  0.9990 ‐0.0088 0.1828 1.0000 
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This demonstration shows that while any pair of sampled vectors of random numbers may 
themselves be uncorrelated, their exponentiated values are not (i.e.,	ߩ௎,௏ ്  ௎మ,௏మሻ. Whileߩ

we may believe we have two sample vectors of independent random variables, we 
probably do not. True statistical independence is a high standard of independence between 
random variables and is difficult to achieve – particularly through statistical sampling.  A 
less stringent type of independence is “expectation independence”, in which the variables 
remain uncorrelated (i.e.,	ߩ௎,௏ ൌ ௎ೖ,௏ೖߩ ൌ 0ሻ	for any higher order of expectation 

operations.  “Uncorrelated” is the least stringent standard, and as our demonstration shows, 
correlation can be induced through exponentiation of the random variables.   

Another way RVs can be correlated is through the structure of the mathematical problem 
(i.e., the functional relationship to each other directly through one equation or indirectly 
through more than one equation), whether that structure is a cost estimate or a schedule 
network.  In a cost estimate, two CERs can be correlated through sharing a common cost 
driver or where one CER drives another CER, such as a cost-on-cost factor. Garvey26 
(2000) provides an analytic method of determining ߩ௑,௒ when ܺ and ܻ are random 

variables representing the estimates from errorless CERs. In a schedule network, two finish 
dates may have uncorrelated durations of their predecessor tasks, but will still be correlated 
to each other by sharing a common predecessor.  We are interested in calculating 
functional correlation out of necessity when using analytic methods of uncertainty 
analysis. 

  

                                                 

26 Garvey, P. R. (2000). Probability Methods for Cost Uncertainty Analysis: A Systems Engineering 
Perspective. New York, NY: Marcel Dekker. 
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4 Probability Tools 
When we use a cost model to perform a cost risk analysis, we need to know the uncertainty 
of the individual cost estimates, their statistical dependencies, and how to calculate their 
sums.  We can employ statistical modeling techniques such as statistical simulation or 
statistical analysis to find these uncertainties and their properties.  Although the goal is the 
same, these techniques differ, which we will discuss in more detail. 

4.1 Statistical	Simulation	
Statistical simulation is a numerical experiment designed to provide statistical information 
about the properties of a model driven by random variables.  It is often used in cost and 
schedule risk analysis to model the complex interaction of the transformations and 
summations involved with correlated random variables. 

The statistical simulation process follows these steps: 

1) Define numerical experiment (spreadsheet, schedule network, etc.)  
2) Define PDFs for each random variable 
3) Define correlation coefficients for random variables 
4) Determine the number of experimental trials 
5) For each trial: 

a. Draw correlated random variable(s) from defined PDF(s) 
i. Sample uniform distributions, ܷሺ1,0ሻ 

ii. Transform each ܷሺ1,0ሻ to the desired PDF based on an inverse 
transformation of the cumulative density function (CDF), 
denoted as CDF-1. 

iii. Correlate the set of PDFs 
b. Compute the experimental result(s) 
c. Save the experimental result(s) 

6) At the end of the simulation, determine the statistics from the experimental 
results 

4.1.1 Sampling	Techniques	
Statistical simulation tools use one or more of the following sampling techniques: 

 Bootstrap sampling:  Re-sampling with replacement from sample data numerous 
times in order to generate an empirical distribution of a statistic  

 Monte Carlo sampling:  New sample points are generated without taking into 
account the previously generated sample points 

 Latin Hypercube sampling:  Each variable is divided into m equally probable 
divisions and sampling is done without replacement for each set of m trials 

 Orthogonal sampling:  This adds the requirement that the entire sample space 
must be sampled evenly 
 

The most commonly-used statistical simulations use Monte Carlo or Latin Hypercube 
sampling of correlated random variables.  The reasonableness of the simulation results 
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depends on the reasonableness of the user inputs, correct modeling of PDFs for all random 
variables, and the correct specification of the correlation between these PDFs (even if it is 
assumed to be 0).  The accuracy of the simulation is highly dependent on the simulation’s 
ability to draw uniformly-distributed random variables ܷሺ1,0ሻ in step 5.a.i and to correlate 
them correctly in step 5.a.iii.   

4.1.1.1 Generating PDFs from Random Number Generators 
A random number generator, such as the Excel RAND( ) statement, produces a uniformly-
distributed pseudo-random number between 0 and 1 (0 ൑ ܷሺ0,1ሻ,൑ 1).  We know that the 
range of the CDF, ܨ௑ሺݔሻ, for any random number is the same (i.e., 0 ൑ ሻݔ௑ሺܨ ൑ 1).  Based 
on that knowledge, the uniform draw can be transformed by the inverse of the CDF, the 
CDF-1, to get the desired probability distribution,	 ௑݂ሺݔሻ as shown in Figure 4-1.  The Excel 
statements are fairly simple to use for this purpose, as we will demonstrate. 

We can generate different PDFs using Excel to demonstrate how statistical simulations 
generate differently-distributed random numbers. First, we will generate a pseudo-random 
number based on a uniform distribution ܷሺ0,1ሻ, then transform it into the desired PDF 
using the inverse CDF (i.e., CDF-1) using simple Excel functions. 

 

Note: In the graph on the left, the cumulative probability, P(x), is the vertical  
axis, and in the graph on the right, P(x) is the horizontal axis. 

Figure 4-1 Simulating a Lognormal Distribution 

In our example, 1000 uniformly-distributed numbers over the interval [0,1] were generated 
using the Excel RAND( ) function.   Figure 4-2 shows the histogram of the 1000 uniform 
draws, which is a representation of	ܷሺ0,1ሻ. 
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Figure 4-2 Simulated Uniform Distribution 

The moments of the pseudo-random uniform distribution formed by the 1000 samples, the 
vector ࢅ, can be easily calculated using the following Excel statistical functions: 

 ߤ= AVERAGEሺ	ࢅሻ 
 ߪൌSTDEVሺ	ࢅሻ	
 ߴൌ	SKEWሺ	ࢅሻ	
 ߢൌKURTሺ	ࢅሻ		

Note the kurtosis calculated by the Excel function is excess kurtosis.  The moments of the 
uniform samples and their exact values based on the defined uniform distribution are 
shown in Table 4-1. 

Table 4-1 Moments of the Simulated Uniform Distribution 

Moment Simulated Exact 

 ߤ 0.488  0.500 

ߪ 0.292  0.083 

ߴ 0.053  0.000 

ߢ ‐1.222  ‐1.200 

 

Based on the moment statistics of the uniform distribution, it is slightly biased low (based 
on the mean), somewhat unevenly distributed (based on the standard deviation), right-
skewed (based on the positive skewness), and platykurtic (based on the excess kurtosis). 

A normal distribution ܰሺ1000,300ሻ can be generated by transforming ܷሺ0,1ሻ using the 
inverse CDF of a normal distribution.  The transform function (i.e., the inverse CDF of a 
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normal distribution) used in this example is NORMINV (ݔ, ,ߤ  where x is the draw 27,(ߪ
from ܷሺ0,1ሻ, 1000 = ߤ, and 300 = ߪ.  Figure 4-3 shows the histogram of the normal PDF 
formed by this procedure, and Table 4-2 shows the moments of the simulated and exact 
values expected. 

 

Figure 4-3 Simulated Normal Distribution 

Table 4-2 Moments of the Simulated Normal Distribution 

Moment Simulated Exact 

 ߤ 987.7155  1000 

ߪ 303.4236  300 

ߴ 0.001349  0 

ߢ ‐0.12993  0 

 

Likewise, a lognormal distribution ܮሺ1000,300ሻ can be generated by transforming ܷሺ0,1ሻ 

using the inverse CDF of a lognormal distribution.  The transform function used in this 

example is LOGINV(x,P,Q).28  Before we can use the inverse lognormal transformation, 

we must find P and Q, which are the log-transformed mean and sigma of the lognormal 

distribution. The log-transformed mean, ܲ ൌ ଵ

ଶ
݈݊ ቀ ఓర

ఓమାఙమ
ቁ ൌ 6.8647, and the log-

transformed sigma,	ܳ ൌ ට݈݊ ቀ1 ൅ ఙమ

ఓమ
ቁ ൌ 0.2936.  

                                                 

27 NORMINV( ) is an Excel 2007 function, and NORM.INV( ) is an Excel 2010 function.  
28 LOGINV( ) is an Excel 2007 function and LOGNORM.INV( ) is an Excel 2010 function. 
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Figure 4-4 shows the histogram of the lognormal PDF formed by this procedure, and Table 
4-3 provides the moments of the simulated and exact values expected. 

 

Figure 4-4 Simulated Lognormal Distribution 

Table 4-3 Moments of the Simulated Lognormal Distribution 

Moment  Simulated Exact 

 ߤ 988.989 1000

ߪ 299.102 300

ߴ 0.855934 0.927 

ߢ 1.094075 1.566 

4.1.2 Correlating	Random	Numbers	
Much literature in the statistics community exists regarding generating correlated random 
numbers for use in statistical simulation, but few families of joint PDFs specified in terms 
of their Pearson product-moment correlation exist.  Among ones that do exist are 
correlated joint normal, joint normal-lognormal and joint lognormal distributions discussed 
in Garvey (2000).29  Other families of joint distributions are formed through the use of 
copulas – a transformation technique used to create joint probability distribution. 

4.1.3 Timing	of	Discovery	of	Correlation	Methods	
The timing of the discovery of methods of generating correlated random numbers was an 
influence on which commercially-available risk analysis tools use Pearson (product 
moment) correlation vs. Spearman (rank) correlation.  Commercial tools developed in the 
early-1980s (i.e., @Risk and Crystal Ball) use a method of generating rank correlated 

                                                 

29 Garvey, P. R. (2000). Probability Methods for Cost Uncertainty Analysis: A Systems Engineering 
Perspective. New York, NY: Marcel Dekker. 
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random numbers based on a published paper (Iman & Conover, 1982)30.  In the late-1990s, 
a new algorithm (Lurie & Goldberg, 1998)31, 32 was published that provided a method of 
generating Pearson-correlated random numbers.  Many of the commercially available 
statistical simulation tools were developed before the Lurie-Goldberg paper, so they rely 
on Spearman rank correlation.  However, these are limitations of using rank correlation 
when performing cost risk analysis as noted in Garvey’s paper33 (1999).  Only since 1998 
have tools such as Risk+ for Microsoft Project been programmed with the method 
presented by Lurie and Goldberg.  

4.1.4 Benefits	and	Drawbacks	of	Statistical	Simulation	Techniques	
Statistical simulation has its benefits and drawbacks.  Among its benefits are 1) its ability 
to provide the statistics of a simulated PDF formed by complex mathematical modeling of 
random variables and 2) its relative ease of use.  Quite often, statistical simulation obtains 
very close results to and is easier to use than statistical analysis.  However, statistical 
simulation does have its drawbacks – particularly due to its 1) inability to sample 
uniformly, 2) (in)ability to correlate two distributions exactly using Pearson product-
moment correlation coefficients, 3) difficulty of correlating large numbers of random 
variables, and 4) inability to provide reasonable results when the number of simulation 
trials is too small to account for single or combinations of low-probability events.  The last 
error is further exaggerated when multiplying highly-skewed random variables (e.g., the 
product of two lognormal PDFs) and when performing discrete risk analysis.  In these 
instances, high-impact, low-probability-of-occurrence events are difficult for simulations 
to adequately sample in order to produce reasonable facsimiles of the exact results. 

One way to check the reasonableness of the results of a statistical simulation is to: 1) 
“dump” a list of the results of the correlated random variables being modeled, 2) calculate 
the resulting statistics (e.g., Pearson correlation coefficient between the variables), and 3) 
find the fit statistics of the distributions being modeled.  By performing a dump of the 
simulated variables, an analyst will be able to ensure the simulation has created a 
reasonable facsimile of the desired input distributions and output distributions (or the 
calculation of the Pearson correlation between the correlated random variables) and that 
they are close to that specified.  Any statistical simulation tool that does not provide the 
ability to examine a dump of the trials should be avoided. 

                                                 

30 Iman, R.L. and Conover, W.J., “A Distribution-free Approach to Inducing Rank Correlation among Input 
Variables,” Communications in Statistics - Simulation, Computation, Vol. 11, No. 3(1982), pages 311-334. 
31 Lurie, P.M.; Goldberg, M.S., “A Method for Simulating Correlated Random Variables from Partially 
Specified Distributions,” Management Science, Vol. 44, No. 2, February 1998, pages 203-218. 
32 Related briefing: “Simulating Correlated Random Variables,” 32nd DOD Cost Analysis Symposium, 2-5 
February 1999. 
33 Garvey, P.R., “Do Not Use Rank Correlation in Cost Risk Analysis,” 32nd DOD Cost Analysis 
Symposium, 2-5 February 1999. 



ANALYTIC METHOD FOR RISK ANALYSIS 

44 
 

4.2 Statistical	Analysis	
Unlike simulation, statistical analysis relies on the exact calculation of moments of the 
PDF.  We will use moments as the basis of the analytical technique proposed in this report. 

4.2.1 Moments	
Moments are important measures of the properties of random variables, and they come in 
many varieties. The three we have discussed earlier and with which we are most concerned 
are raw moments, central moments and standardized moments.   

4.2.2 Method	of	Moments	
Method of Moments (MOM) is a relatively easy-to-use, analytical technique used to 
calculate the moments of probability distributions.  The MOM technique relies on exact 
statistical calculations of moments to derive the statistics of probability distributions such 
as WBS element cost estimates or schedule durations.  With the widespread use of 
statistical simulation tools by cost and schedule analysts, MOM has become a forgotten 
“art”.  One of the surviving MOM techniques is the Formal Risk Assessment of System 
Cost Estimates (FRISK) method (Young, 1992).34  

4.2.2.1 FRISK 
FRISK is a MOM approach used to calculate the ߤ	and	ߪଶ	of the PDF of total cost formed 
by the statistical summation of PDFs of subordinate cost elements.  

The steps used in the FRISK method are: 

1. Define numerical experiment; in this case, the summation structure of a WBS 
2. Define triangular PDFs, ܶሺܮ௜,ܯ௜,  , or random variable to be	௜ሻ for each cost, ௜ܺܪ

statistically summed, by specifying the low (ܮ௜ሻ, most likely (ܯ௜ሻ and high 
 values	௜ሻܪ)

3. Calculate the ߤ௜ and ߪ௜ଶ for each ܶሺܮ௜,ܯ௜,  ௜ሻ using Equations 4-1 and 4-2ܪ

௜ߤ  ൌ ሺܮ௜ ൅ ௜ܯ ൅ ௜ሻܪ 3⁄   4-1
௜ଶߪ  ൌ ሺܮ௜

ଶ ൅ ௜ܯ
ଶ ൅ ௜ܪ

ଶ െ ௜ܯ௜ܮ െ ௜ܪ௜ܮ െ ௜ሻܪ௜ܯ 18⁄    4-2

4. Sum the ݊ means to calculate the mean of the sum of the PDFs using Equation 
4-3 
௢௧்ߤ  ൌ ∑ ௜ߤ

௡
௜ୀଵ   4-3

5. Define correlation coefficients,  ௜,௝, for each pair of PDFsߩ	

6. Calculate the total variance of the sum of the PDFs using Equation 4-4 
௢௧ଶ்ߪ  ൌ ∑ ௜ଶߪ

௡
௜ୀଵ ൅ ∑ ∑ ௝ߪ௜ߪ௜,௝ߩ

௡ିଵ
௝ୀଵ௜வ௝   4-4

7. Assume the PDF of the total cost is a lognormal distribution, ܮሺܲ, ܳሻ 

                                                 

34 Young, P. H. (1992). FRISK - Formal Risk Assessment of System Cost. Aerospace Design Conference. 
Irvine, CA: AIAA. 
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8. Calculate the lognormal parameters P and Q using Equations 4-5 and 4-6. 
 ܲ ൌ ଵ

ଶ
݈݊ ቀ ఓర

ఓమାఙమ
ቁ  4-5

 
ܳ ൌ ට݈݊ ቀ1 ൅ ఙమ

ఓమ
ቁ  

4-6

9. Determine the percentile statistics ܮሺܲ, ܳሻ௓ using the inverse CDF tables or the 
LOGINV function in Excel. 
 

The outputs from an example FRISK calculation are shown in Figure 4-5. 

 

Figure 4-5 Example FRISK Output 

FRISK is even more efficient when programmed as an Excel spreadsheet.  The means and 
standard deviations of triangular distribution inputs in step 3 can be calculated using 
AVERAGE(L,M,H) and STDEVP(L,M,H)/2, respectively. When the series of means and 
variances to be statistically summed appears in contiguous cells (rows or columns), the 
following Excel functions can be used: 

1. SUMሺrangeሻ, where range is the series of means  
2. SQRTሺMMULTሺTRANSPOSEሺߪറሻ,MMULTሺR,	ߪറሻሻሻ, where ߪറ is the range of the 

vector of ߪ௜ in columnar form and R is the nxn correlation matrix. This function 
must be entered by pressing ൏CTRL൐	൏SHIFT൐	൏ENTER൐.  An example of the 
correlation matrix is shown in Figure 4-6. 
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ۏ
ێ
ێ
ێ
ێ
ێ
ۍ
1 0.2 0.2 0.2 0.2 0.2 0.2
0.2 1 0.2 0.2 0.2 0.2 0.2
0.2 0.2 1 0.2 0.2 0.2 0.2
0.2 0.2 0.2 1 0.2 0.2 0.2
0.2 0.2 0.2 0.2 1 0.2 0.2
0.2 0.2 0.2 0.2 0.2 1 0.2
0.2 0.2 0.2 0.2 0.2 0.2 1 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Figure 4-6 Example Correlation Matrix 

When all ߤ௜ and ߪ௜ used in the statistical summation are not in contiguous cells, we can re-
create a set of contiguous cells elsewhere in the spreadsheet (or through an Excel macro) to 
allow the use of the Excel functions (1 and 2) above. 

Let us perform an example FRISK rollup calculation using a set of errorless estimating 
relationships from Book (1994).35  Assume we have modeled the cost estimates of the 
WBS elements with triangular distributions as shown in Table 4-4.  The parameters of the 
triangular distributions are the outputs of a CER using Low, Most Likely and High cost 
drivers. 

Table 4-4 Example FRISK Rollup Inputs (Costs in $K) 

WBS Element, ܑ  ࢏ࡸ ࢏ࡹ ࢏ࡴ
Antenna  191 380 1151 

Electronics  96 192 582 

Platform  33 76 143 

Facilities  9 18 27 

Power Distribution 77 154 465 

Computers  30 58 86 

Environmental Control 11 22 66 

Communications 58 120 182 

Software  120 230 691 

TOTAL  625 1250 3393 

 

Note the naïve sum of the most likely costs,	ܯ௜, is $1250K. 

The first WBS element, the Antenna WBS element CER, is defined by a triangular 
distribution, ܶሺ191,380,1151ሻ.  The mean of a triangular distribution from Equation 4-1 is 

ଵߤ  ൌ ሺܮଵ ൅ܯଵ ൅ ଵሻܪ 3⁄ ൌ ଵଽଵାଷ଼଴ାଵଵହଵ

ଷ
ൌ   ܭ$574

 

4-7

and the standard deviation of the Antenna WBS cost using Equation 4-2 is 

                                                 

35 Book, S. A. (1994). Do Not Sum 'Most Likely' Cost Estimates. 1994 NASA Cost Estimating Symposium. 
Houston, TX. 
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௙ሺ௫ሻభߪ  ൌ ටߪ௙ሺ௫ሻభ

ଶ ൌ

ටሾଵଽଵమାଷ଼଴మାଵଵହଵమିሺଵଽଵሻሺଷ଼଴ሻିሺଵଽଵሻሺଵଵହଵሻିሺଷ଼଴ሻሺଵଵହଵሻሿ

ଵ଼
ൌ $207.62K	  

 

4-8

Repeating this procedure for all of the WBS elements in Table 4-4 allows us to calculate 
the moments (μ୤ሺ୶ሻ౟	and σ୤ሺ୶ሻ౟) for all WBS elements as shown in Table 4-5. The mean of 

the total is calculated using Equation 4-3.  To calculate the total cost sigma, we need to 
specify a correlation matrix.   For this example, we use the matrix shown in Figure 4-6.  To 
calculate the standard deviation of the total, we use the matrix form of Equation 4-4 to 
obtain the results shown in Table 4-5. 

The mean cost is $1756K, which is significantly larger than the naïve sum of the most 
likely costs, which is $1250K (Book, 1994).36 

Table 4-5 Example FRISK Rollup (costs in $K) 

WBS Element, ܑ Estimate, ࢌሺ࢞ሻ࢏ ሻܑܠሺ܎ૄ ો܎ሺܠሻܑ 

Antenna  T(191,380,1151) 574 207.62 

Electronics  T(96,192,582) 290 105.08 

Platform  T(33,76,143) 84 22.63 

Facilities  T(9,18,27) 18 3.67 

Power Distribution  T(77,154,465) 232 83.86 

Computers  T(30,58,86) 58 11.43 

Environmental Control  T(11,22,66) 33 11.88 

Communications  T(58,120,182) 120 25.31 

Software  T(120,230,691) 347 123.68 

TOTAL (Not necessarily the sum) 1756 364.93 

 

We quantify the percentile value of the sum of the most likely costs by forming a CDF.  If 
we assume the total cost of our estimate is lognormally distributed, we can compute the 
lognormal distribution parameters (ܲ ൌ 7.4497 and	ܳ ൌ 0.2056) using Equations 4-5 and 

4-6. 

A quick calculation using the lognormal distribution functions in Excel tells us the 
percentile of the naïve sum of most likely costs.  The equation and results are: 

LOGNORM.DIST	ሺ1250,	P,	Q,	TRUEሻ	ൌ0.060553ൌ6.0553%	

This is why we model estimates probabilistically.  It would be very difficult to defend an 
estimate at the 6th percentile and unwise to want it in the first place! 

                                                 

36 Ibid. 
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Using the inverse of the lognormal distribution, we find the cost value at any probability 
level on the CDF.  This is a very simple way of quickly forming CDFs such as the one 
shown in Figure 4-7. 

 

Figure 4-7 FRISK Example CDF 

4.2.2.2 Enhancements to FRISK 
FRISK is an elegant way to model the simple statistical summation of a cost estimate.  
However, to be fully effective as a tool to exactly and efficiently analyze a cost estimate, 
we need to be able to accommodate 1) statistical summation of non-adjacent cells; 2) 
inputs that are non-triangularly distributed, such as normal or lognormal distributions; 3) 
modeling CER cost-driver uncertainties, 4) transformation of cost-driver PDFs by a CER, 
5) modeling the additive or multiplicative error of the CER, and 6) multi-level summations 
as in the case of a complex WBS.  Fortunately, solutions to these issues are available from 
the literature (Covert R. P., 2006).37 

4.3 MOM	Operations	and	Analytic	Method	Description	
This section describes the mathematical treatment of these operations on random variables 
and provides methods of calculating the moments. 

4.3.1 Addition	and	Subtraction	of	Random	Variables	
The simplest mathematical operation with which we will be concerned is the statistical 
summation and subtraction of random variables. 

As we discussed in Section 3.2.1 the WBS defines the summation of individual WBS 
elements to higher hierarchical levels.  Similarly, in Section 3.3.2.1, the serial arrangement 
of schedule tasks allows us to statistically sum their durations. Both mathematical 

                                                 

37 Covert, R. P. (2006). Correlations in Cost Risk Analysis. 2006 Annual SCEA Conference. Tysons Corner, 
VA. 
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problems are treated with the same statistical summation technique.  Let ௜ܺ be the cost (or 
duration) of an individual WBS element (or serially arranged set of schedule tasks), and ்ܺ 
be the sum of individual WBS elements,	݅.  Then the mean of WBS element ݅ is the 
expected value ܧሾ∙ሿ of the random variable,	 ௜ܺ. 

௜ߤ  ൌ ሾܧ ௜ܺሿ  
 

4-9

So the mean of the sum of individual WBS elements is the total mean, ்ߤ 

	 μ୘ ൌ Eሾ∑ X୧
୬
୧ୀଵ ሿ ൌ ∑ EሾX୧ሿ

୬
୧ୀଵ

 
4-10

More simply put, the mean of the sum is the sum of the means. 

The total variance,	்ߪଶ, of the sum of the WBS elements is the square of the standard 
deviation of the total, ்ߪ.  

 σ୘ଶ ൌ VarሺX୘ሻ ൌ ∑ σ୧ଶ
୬
୧ୀଵ ൅ ∑ ∑ρ୧,୨σ୧σ୨୧ஷ୨

	

4-11

In expectation parlance, Equations 4-12 and 4-13 are the expected values of the sum and 
difference of two random variables.38 

ሾܺܧ  ൅ ܻሿ ൌ ሾܺሿܧ ൅ ሾܻሿ  4-12ܧ
ሾܺܧ  െ ܻሿ ൌ ሾܺሿܧ െ   ሾܻሿܧ

 
4-13

Equations 4-14 and 4-15 are the variances of the sum and difference of two random 
variables.  Less intuitive is the variance resulting from the difference of two random 
variables.  Equation 4-15 is similar to Equation 4-14 except the covariance term 
,ሺܺݒ݋ܥ2 ܻሻ is subtracted from the sum of the variances of ܺ and ܻ. 

ሾܺݎܸܽ  ൅ ܻሿ ൌ ሾܺሿݎܸܽ ൅ ሾܻሿݎܸܽ ൅ ,ሺܺݒ݋ܥ2 ܻሻ  4-14
ሾܺݎܸܽ  െ ܻሿ ൌ ሾܺሿݎܸܽ ൅ ሾܻሿݎܸܽ െ ,ሺܺݒ݋ܥ2 ܻሻ  

 
4-15

The shape of the distribution formed by the sum and difference of lognormally distributed 
random variables is discussed in the applied statistics literature (Lo, 2012).39  It is agreed 
that the shape of the sum or difference of two correlated lognormal variables are neither 
normal nor lognormal, but an approximate shape can be derived from the parameters of the 
distributions.   

                                                 

38 When calculating the criticality index (CI) of a schedule task, we must evaluate the integral of the 
difference of random variables.  
39 Lo, C. F., The Sum and Difference of Two Lognormal Random Variables (May 22, 2012). Available at 
SSRN: http://ssrn.com/abstract=2064829  or http://dx.doi.org/10.2139/ssrn.2064829  
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The parameters of interest when subtracting one lognormally distributed PDF from another 
are: the correlation between the two PDFs, and their respective means and standard 
deviations (or variances).  These parameters not only determine the mean and variance of 
the PDF formed by their difference but also the skewness and kurtosis of the same.  To 
estimate the shape of the distribution formed by subtracting one RV from another, we use 
the results of a numerical experiment (i.e., a 100,000-trial statistical simulation).  

The numerical experiment uses four PDFs defined as lognormal distributions:	ܣ ൌ  ,ሺ1,1ሻܮ
ܤ ൌ ܥ ,ሺ1,0.5ሻܮ ൌ ܦ ሺ2,1ሻ, andܮ ൌ  ሺ2,0.5ሻ.  Table 4-6 shows the difference betweenܮ
uncorrelated pairs (i.e.,	ߩ ൌ 0	) of	,ܣ	,ܤ	ܥ, and ܦ.  We show the mean, standard deviation, 
skewness, kurtosis and shape of the PDF-defined difference in each of the twelve cases. 

Table 4-6 Difference of Two Uncorrelated PDFs 

Case  Difference   ࣆ ࣌ ࣖ ࣄ Fit Shape 

1  ܣ െ  ܤ 0.000 1.1159 2.613 22.771 Logistic 

2  ܣ െ  ܥ ‐1.000 1.4152 0.772 11.785 Student's t 

3  ܣ െ  ܦ ‐1.000 1.1151 2.652 22.033 Max Extreme 

4  ܤ െ  ܣ 0.000 1.1159 ‐2.613 22.771 Logistic 

5  ܤ െ  ܥ ‐1.000 1.1177 ‐1.022 6.381 Logistic 

6  ܤ െ  ܦ ‐1.000 0.7070 0.299 4.471 Logistic 

7  ܥ െ  ܣ 1.000 1.4152 ‐0.772 11.785 Student's t 

8  ܥ െ  ܤ 1.000 1.1177 1.022 6.381 Lognormal 

9  ܥ െ  ܦ 0.000 1.1198 1.099 6.263 Lognormal 

10  ܦ െ  ܣ 1.000 1.1151 ‐2.652 22.033 Weibull 

11  ܦ െ  ܤ 1.000 0.7070 ‐0.299 4.471 Logistic 

12  ܦ െ  ܥ 0.000 1.1198 ‐1.099 6.263 Weibull 

 

A lognormal PDF is defined by its mean and standard deviation, is right skewed, and it is 
supported over the range of real values	ሾ0,∞ሿ.  The mean and standard deviation are 
always positive real numbers, so a lognormal PDF must have a positive mean and positive 
skewness.  Only case 8 in Table 4-6 can be considered an approximation to a true 
lognormal distribution based on its mean and skewness.  Case 5 produces a mirror image 
of case 8, so it is considered to be a “negative lognormal distribution”.   

We can use the knowledge that if the difference of two RVs (i.e., X-Y) produces a negative 
lognormal distribution, then all of the area of the PDF of X-Y is in the negative axis.  Since 
this is true, Y-X is a lognormal distribution, and all of its area lies on the positive real axis. 

We have considered the uncorrelated case thus far, but when X and Y are highly 
correlated, the difference of two RVs (i.e., X-Y) produces a distribution that is less skewed 
and has the properties of a normal distribution. 

We use the following rules to determine the approximate shape of the resulting 
distribution: 
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1. If ܺ has a larger variance than	ܻ, then we expect ܺ to dominate the variance of the 
distribution	ܺ െ ܻ.  The resulting distribution will have positive skewness. 

a. If	ߪ௑ ൐  .൐0ߢ ௒, thenߪ
b. Conversely,	if	ߪ௑ ൏  .൏0ߢ ௒, thenߪ

2. If the mean of ܺ	is larger than the mean of		ܻ, the mean of ܺ െ ܻ will be positive.  
a. If ߤ௑ ൒ ௑ߪ	௒ andߤ ൐ ܺ ௒, thenߪ െ ܻ will be approximately lognormally 

distributed.  
b. If ߤ௑ ൑ ௑ߪ	௒ andߤ ൏ ܺ  ௒, thenߪ െ ܻ can be approximated by a negative-

lognormal distribution.  
3. If ߤ௑ ൑ ௑ߪ	௒ andߤ ൐ ܺ  ௒, thenߪ െ ܻ can be approximated by a left-shifted 

lognormal distribution. 
4. If ߩ௑,௒ is large (ߩ௑,௒~0.7) or greater, then the distribution formed can be 

approximated by a normal distribution.  

4.3.2 Covariance	of	Random	Variables	
When we are calculating the means and variances of CERs that rely on cost drivers that are 
random variables, we are interested in the functional transformation of the PDFs by the 
CER and the inclusion of the CER’s error.  To accurately calculate the moments of the 
CERs in the cost model, we must know how the CER and its error are correlated (or how 
they “covary”) with each other in order to properly perform statistical summation. 

Covariance is defined in Equation 4-16.  Note that it is the expected value of the product of 
the differences of the random variables and their respective means.   It is also defined in 
Equation 4-17 as the expected value of the product of the random variables minus the 
product of their means.  

,ሺܺݒ݋ܥ  ܻሻ ൌ ௑௒ߪ ൌ ሾሺܺܧ െ ௑ሻሺܻߤ െ ௒ሻሿ  4-16ߤ
,ሺܺݒ݋ܥ  ܻሻ ൌ ሾܻܺሿܧ െ   ௒, andߤ௑ߤ

,ሺܺݒ݋ܥ ܺሻ ൌ ሺܺሻݎܸܽ ൌ ሾܺଶሿܧ െ   ሾܺሿଶܧ
 

4-17

The correlation coefficient ߩ௑,௒	in Equation 4-18 is the product-moment correlation 

coefficient, which relates ݒ݋ܥሺܺ, ܻሻ to the product of the standard deviations of ܺ and ܻ.  
This is the same Pearson product-moment correlation coefficient used in FRISK’s 
statistical summation.  

ሾܻܺሿܧ  ൌ ௒ߪ௑ߪ௑,௒ߩ ൅   ௒ߤ௑ߤ

 

4-18

 Two important theorems to remember are: 

	 If X,Y are independent, then ݒ݋ܥሺܺ, ܻሻ ൌ 0,
	

4‐19
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and the symmetry of covariance of Equation 4-20 requires us to only define the upper or 
lower off-diagonal elements of the correlation matrix (Figure 4-6), since	ߩ௜,௝ ൌ    .௝,௜ߩ

,ሺܺݒ݋ܥ  ܻሻ ൌ ,ሺܻݒ݋ܥ ܺሻ
 

4-20

The bilinearity property of covariance means the following is true: 

ሺܽܺݒ݋ܥ  ൅ ܾ, ܻܿ ൅ ݀ሻ ൌ ,ሺܺݒ݋ܥܿܽ ܻሻ  4-21
ሺݒ݋ܥ  ଵܺ ൅ ܺଶ, ܻሻ ൌ ሺݒ݋ܥ ଵܺ, ܻሻ ൅ ,ሺܺଶݒ݋ܥ ܻሻ and

,ሺܺݒ݋ܥ ଵܻ ൅ ଶܻሻ ൌ ,ሺܺݒ݋ܥ ଵܻሻ ൅ ,ሺܺݒ݋ܥ ଶܻሻ  
4-22

 

4.3.3 Transformation	of	Random	Variables	
When using linear CERs (and factors) such as	ݕ ൌ ܽ ൅  ௑ is shifted by the additiveߤ ,ܾܺ
term (ܽ) and scaled by the multiplicative term (ܾ) (Equation 4-23), and the variance is 
scaled by the square of the multiplicative term (ܾ) (Equation 4-24).  

ሺܽܧ  ൅ ܾܺሻ ൌ ܽ ൅ ሺܺሻܧܾ ൌ ܽ ൅ ௑  4-23ߤܾ
ሺܽݎܸܽ  ൅ ܾܺሻ ൌ ሺܾଶሻܸܽݎሺܺሻ ൌ ܾଶߪ௑ଶ  

 
4-24

When linear transformations are applied to pairs of correlated random variables, the 
covariance is unaffected by the additive terms and is scaled by the multiplicative terms 
(Equation 4-25). 

ሺܽݒ݋ܥ  ൅ ܾܺ, ܿ ൅ ܻ݀ሻ ൌ ሺܾ݀ሻݒ݋ܥሺܺ, ܻሻ  
 

4-25

We can calculate the correlation coefficient between two random variables, such as two 
CERs that share a common cost driver, using Equation 4-26. 

,ሺܺݎݎ݋ܥ  ܻሻ ൌ ௑,௒ߩ ൌ
ாሾ௑௒ሿିఓ೉ఓೊ

ఙ೉ఙೊ
, and  

௑,௒ߩ ൌ
஼௢௩ሺ௑,௒ሻ

ఙ೉ఙೊ
  

4-26

To do this with a pair of CERs, we will need to determine the mean and sigma values for 
both CERs and the term	ܧሾܻܺሿ.  The ܧሾܻܺሿ term is the expected value of the product of ܺ 
and ܻ, which is why we call Pearson correlations “product-moment” correlations. 

When nonlinear transformations are performed on random variables, as in the case where a 
CER, ܻ, is expressed as a function of a random variable, X: 

 ܻ	 ൌ 	݂ሺXሻ ൌ ሺܽ ൅ ܾX௖ሻ ; where     
ܽ,	ܾ, and ܿ are coefficients of the CER with (ܸܽݎሺ∙ሻ ൌ 0),  
 

4-27

The terms ߤ௒,ߪ௒ are computed as follows: 
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௒ߤ  ൌ ௔ା௕௑೎ߤ ൌ Eሾܽ ൅ ܾܺ௖ሿ ൌ ܽ ൅ ሾܺ௖ሿ  4-28ܧܾ
௒ߪ  ൌ ඥܸܽݎሺܻሻ ൌ ඥܸܽݎሺܽ ൅ ܾܺ௖ሻ  

 

4-29

Since the variance of a constant is 0,	ܸܽݎሺܽ୧ሻ ൌ 0, 

௒ߪ  ൌ ඥܾଶܸܽݎሺܺ௖ሻ ൌ ܾඥܸܽݎሺܺ௖ሻ, 
 

4-30

If ܼ ൌ ሺZሻݎܸܽ ௖ andݔ ൌ ሾZଶሿܧ െ  ሾܼሿଶ thenܧ

ሺܺ௖ሻݎܸܽ  ൌ ሾሺܺ௖ሻଶሿܧ െ ሺܧሾܺ௖ሿሻଶ ൌ ሾܺଶ௖ሿܧ െ ሺܧሾܺ௖ሿሻଶ  
 

4-31

The expectation ܺൣܧ୩൧ is dependent on the shape of the probability distribution of	ܺ. In 

this case, if X is a triangular distribution,	ܺ ൌ ܶሺܮ, ,ܯ  ሻ, thenܪ

୩൧ܺൣܧ ൌ
ଶ

ሺுି௅ሻሺெି௅ሻ
ቄ
ெೖశమି௅ೖశమ

௞ାଶ
െ ܮ

ெೖశభି௅ೖశభ

௞ାଵ
ቅ ൅

ଶ

ሺுି௅ሻሺுିெሻ
ቄܪ

ுೖశభିெೖశభ

௞ାଵ
െ

ுೖశమିெೖశమ

௞ାଶ
ቅ  

Substituting ݇ with ܿ, we obtain: 

ሾܺ௖ሿܧ ൌ ଶ

ሺுି௅ሻ
ቂ ଵ

ሺெି௅ሻ
ቄெ

೎శమି௅೎శమ

௖ାଶ
െ ܮ ெ೎శభି௅೎శభ

௖ାଵ
ቅ ൅ ଵ

ሺுିெሻ
ቄܪ ு೎శభିெ೎శభ

௖ାଵ
െ ு೎శమିெ೎శమ

௖ାଶ
ቅቃ  

and  

௒ߤ ൌ ܽ ൅ ଶ௕

ሺுି௅ሻሺெି௅ሻ
ቄெ

೎శమି௅೎శమ

௖ାଶ
െ ܮ ெ೎శభି௅೎శభ

௖ାଵ
ቅ ൅ ଶ௕

ሺுି௅ሻሺுିெሻ
ቄܪ ு೎శభିெ೎శభ

௖ାଵ
െ ு೎శమିெ೎శమ

௖ାଶ
ቅ  

So 
ఓೊି௔

௕
ൌ  :ሺܺ௖ሻ can be rewritten asݎܸܽ ሾܺ௖ሿ andܧ

ሺܺ௖ሻݎܸܽ ൌ ሾܺଶ௖ሿܧ െ ቀ
ఓ೑ି௔

௕
ቁ
ଶ
          

ሺܺଶ௖ሻݎܸܽ ൌ ଶ

ሺுି௅ሻ
ቂ ଵ

ሺெି௅ሻ
ቄெ

మ೎శమି௅మ೎శమ

ଶ௖ାଶ
െ ܮ ெమ೎శభି௅మ೎శభ

ଶ௖ାଵ
ቅ ൅ ଵ

ሺுିெሻ
ቄܪ ுమ೎శభିெమ೎శభ

ଶ௖ାଵ
െ

ுమ೎శమିெమ೎శమ

ଶ௖ାଶ
ቅቃ െ ቀ

ఓ೑ି௔

௕
ቁ
ଶ
  

Using Equation 4-30,  

௒ߪ ൌ

ܾට ଶ

ሺுି௅ሻ
ቂ ଵ

ሺெି௅ሻ
ቄெ

మ೎శమି௅మ೎శమ

ଶ௖ାଶ
െ ܮ ெమ೎శభି௅మ೎శభ

ଶ௖ାଵ
ቅ ൅ ଵ

ሺுିெሻ
ቄܪ ுమ೎శభିெమ೎శభ

ଶ௖ାଵ
െ ுమ೎శమିெమ೎శమ

ଶ௖ାଶ
ቅቃ െ ቀ

ఓ೑ି௔

௕
ቁ
ଶ
	   

This is a rather lengthy equation, so VBA expressions are provided in Appendix D.   

From this point forward, where a VBA function exists, such as for	ܺൣܧ୩൧, we will leave 

any expansions of equations in terms of	ܺൣܧ୩൧. 
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We often rely on the calculation of the higher-order moments to determine probability 
distributions used in estimating relationships.  The kth moment of the RV ܺ is 

 
ሾܺ௞ሿܧ ൌ ቊ

∑ ௞ݔ ௑ܲሺݔሻ௑ ; ݂݅ ܺ ݏ݅ ݁ݐ݁ݎܿݏ݅݀

׬ ௞ݔ ௑݂ሺݔሻ݀ݔ
ஶ
ିஶ ; ݂݅ ܺ ݏ݅ ݏݑ݋ݑ݊݅ݐ݊݋ܿ
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In summary, we can use the equations for expected value, variance, and covariance to find 
the moments of a distribution and the covariance (and correlation between random 
variables).  Another simpler way of dealing with complex transformations of independent 
random variables is through the use of Mellin transforms (Section 6). 

4.3.4 Multiplication	and	Division	of	Random	Variables	
Often, we are interested in the moments of the PDF of the product or transformation of 
multiple random variables in an equation such as a CER.  Three methods of finding the 
moments in this situation are the use of: 1) expectation operations, 2) Mellin transforms 
and 3) propagation of errors. The first method is an extension of the expectation operations 
shown in Section 4.3.2, and the last two methods are discussed in greater detail in Sections 
6 and 7.  Section 5 provides a general formula for the variance of the product of two or 
more random variables.   
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5 Product of Dependent Random Variables 
The moments of the PDF formed by the product of two dependent random variables are 
used frequently in probabilistic cost analysis.  Products of random variables are found in 
probabilistic cost estimates using CERs that have correlated error terms, or when using 
cost-dependent CERs.  Products of multiple random variables occur when calculating the 
correlation coefficient between different WBS elements.  We first provide equations for 
the moments of the product of two jointly normal random variables, then follow with the 
case in which we have two jointly lognormal random variables. Using the methods used to 
derive these equations, we provide equations for the moments of the product of multiple 
random variables. 

5.1 Product	of	Two	Normal	Random	Variables	
In the first case, we derive the moments of the product of two random variables that are 
defined using normal PDFs.  If ܺ and ܻ are jointly dependent random variables defined by:  

ܺ ൌ ௑ߤ ൅ ௑ܼߪݎ ൅ √1 െ ܻ ଵ, andܧ௑ߪଶݎ ൌ ௒ߤ ൅ ௒ܼߪݎ ൅ √1 െ   ଶܧ௒ߪଶݎ

where	ܼ,  ܰሺ0,1ሻ), then their	ଶ are independent, standard normal PDFs (i.e.,ܧ ଵ, andܧ
covariances are zero.  This means ݒ݋ܥሺܼ, ଵሻܧ ൌ ,ሺܼݒ݋ܥ	,0 ଶሻܧ ൌ 0, and	ݒ݋ܥሺܧଵ, ଶሻܧ ൌ 0.  
We can further state the means of ܺ and ܻ are ܧሾܺሿ ൌ ሾܻሿܧ ,௑ߤ ൌ  ܺ ௒.  The variances ofߤ
and ܻ are ܸܽݎሺܺሻ ൌ ሺܻሻݎܸܽ	,௑ଶߪ ൌ ܿ ௒ଶ.  Finally, we defineߪ ൌ ,ሺܺݒ݋ܥ ܻሻ ൌ  .௒ߪ௑ߪଶݎ
ଶݎ ൌ    .௑,௒ by definitionߩ

The expected value of the product XY is:  

ሾܻܺሿܧ ൌ ,ሺܺݒ݋ܥ ܻሻ ൅ ሾܻሿܧሾܺሿܧ ൌ ௒ߪ௑ߪ௑,௒ߩ ൅  .using Equation 4-18	௒ߤ௑ߤ

The variance of the product is found through some manipulation: 

ሾܻܺሿݎܸܽ ൌ ሾሺܻܺሻଶሿܧ െ   ଶሾܻܺሿܧ

ሾሺܻܺሻଶሿܧ ൌ ,ሺܺଶݒ݋ܥ ܻଶሻ ൅   ሾܻଶሿܧሾܺଶሿܧ

ሾܻܺሿݎܸܽ ൌ ,ሺܺଶݒ݋ܥ ܻଶሻ ൅ ሾܻଶሿܧሾܺଶሿܧ െ ሺݒ݋ܥሺܺ, ܻሻ ൅   ሾܻሿሻଶܧሾܺሿܧ

ሾܻܺሿݎܸܽ ൌ ,ሺܺଶݒ݋ܥ ܻଶሻ ൅ ሾܻଶሿܧሾܺଶሿܧ െ ሺݒ݋ܥଶሺܺ, ܻሻ ൅ ,ሺܺݒ݋ܥሾܻሿܧሾܺሿܧ2 ܻሻ ൅
  ଶሾܻሿሻܧଶሾܺሿܧ

ሾܻܺሿݎܸܽ ൌ ,ሺܺଶݒ݋ܥ ܻଶሻ ൅ ሾܻଶሿܧሾܺଶሿܧ െ ,ଶሺܺݒ݋ܥ ܻሻ െ ,ሺܺݒ݋ܥሾܻሿܧሾܺሿܧ2 ܻሻ െ
  ଶሾܻሿܧଶሾܺሿܧ

ሾܺଶሿܧ ൌ ௑ଶߤ ൅ ሾܻଶሿܧ and	௑ଶߪ ൌ ௒ଶߤ ൅  ௒ଶߪ
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ሾܻܺሿݎܸܽ ൌ ,ሺܺଶݒ݋ܥ ܻଶሻ ൅ ሺߤ௑ଶ ൅ ௒ଶߤ௑ଶሻሺߪ ൅ ௒ଶሻߪ െ ,ଶሺܺݒ݋ܥ ܻሻ െ ௒ߪ௑ߪଶݎ௒ߤ௑ߤ2 െ
  ௒ଶߤ௑ଶߤ

ሾܻܺሿݎܸܽ ൌ ,ሺܺଶݒ݋ܥ ܻଶሻ ൅ ௒ଶߪ௑ଶߤ௒ଶ൅ߤ௑ଶߤ ൅ ௒ଶߤ௑ଶߪ ൅ ௒ߪ௑ଶߪ
ଶ
െ ܿଶ െ ௒ܿߤ௑ߤ2 െ

  ௒ଶߤ௑ଶߤ

ሾܻܺሿݎܸܽ  ൌ ,ሺܺଶݒ݋ܥ ܻଶሻ൅ߤ௑ଶߪ௒ଶ ൅ ௒ଶߤ௑ଶߪ ൅
௒ߪ௑ଶߪ

ଶ
െ ܿଶ െ    ௒ܿߤ௑ߤ2

 

5-1 

This is the same result obtained by (Goodman, L. A., 1960) and (Bohrnstedt & Goldberger, 
1969).40, 41 

To solve the ݒ݋ܥሺܺଶ, ܻଶሻ term, we must expand the squares of ܺ	and ܻ, use the definition 
of covariance provided in Equation 4-17, and insert that result into Equation 5-1.  This 
derivation is provided in Appendix C – Derivations, Section 16.3.7.  The resulting 
covariance term is  

,ሺܺଶݒ݋ܥ ܻଶሻ ൌ ௒ܿߤ௑ߤ4 ൅ 2ܿଶ  

This allows us to express the variance of the product of two normally distributed PDFs as: 

ሾܻܺሿݎܸܽ ൌ ௒ܿߤ௑ߤ4 ൅ 2ܿଶ൅ߤ௑ଶߪ௒ଶ ൅ ௒ଶߤ௑ଶߪ ൅ ௒ߪ௑ଶߪ
ଶ
െ ሺܿሻଶ െ   ௒ܿߤ௑ߤ2

This simplifies to Equation 5-2. 

ሾܻܺሿݎܸܽ  ൌ ௒ܿߤ௑ߤ2 ൅ ܿଶ൅ߤ௑ଶߪ௒ଶ ൅ ௒ଶߤ௑ଶߪ ൅   ௒ଶߪ௑ଶߪ
  

5-2 

When ܺ	and ܻ	are independent,	ܿ ൌ 0, Equation 5-2 reduces to Equation 5-3. 

ሾܻܺሿݎܸܽ  ൌ ௒ଶߪ௑ଶߤ ൅ ௒ଶߤ௑ଶߪ ൅   ௒ଶߪ௑ଶߪ
 

5-3 

When ܻ ൌ ܺ,	ܿ ൌ  .௑ଶ, Equation 5-2 becomes Equation 5-4ߪ

ሾܺଶሿݎܸܽ  ൌ ௑ଶߤ௑ଶሺ2ߪ2 ൅ ௑ଶሻߪ
 

5-4 

5.2 Product	of	Two	Lognormal	PDFs	
In the case where we are interested in the product of two lognormal PDFs, we cannot rely 
on the symmetric properties of the normal distribution to cancel terms and also cannot rely 

                                                 

40 Goodman, L. A. (1960, Dec.). On the Exact Variance of Products. Journal of the American Statistical 
Association, 55(292), 708-713. 
41 Bohrnstedt, G. W., & Goldberger, A. S. (1969, Dec.). On the Exact Covariance of Products of Random 
Variables. Journal of the American Statistical Association, 64(328), 1439-1442. 
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on the standard normal distributions zero-mean properties to manipulate the equations.  We 
must rely on the fact that the lognormal distribution is related to the exponent of an 
underlying normal distribution. 

If ଵܺ and ܺଶ are jointly distributed normal random variables with	ߩ௑భ,௑మ, then ଵܻ and ଶܻ are 

jointly distributed lognormal random variables with	ߩ௒భ,௒మ, and	 ଵܻ ൌ ݁௑భ, and	 ଶܻ ൌ ݁௑మ.  If 

ଵܺ and ܺଶ are defined by	ܰሺ ଵܲ, ܳଵሻ, and	ܰሺ ଶܲ, ܳଶሻ, then	 ଵܻ and ଶܻ	are defined by 
,௒భߤሺܮ ,௒మߤሺܮ ௒భሻ, andߪ  :௒మሻ, respectively.42  The mean and variance of ଵܻ and ଶܻ areߪ

௒೔ߤ ൌ ݁ቀ௉೔ା
భ
మ
ொ೔
మቁ and ߪ௒೔

ଶ ൌ ݁൫ଶ௉೔ାொ೔
మ൯ ቀ݁ொ೔

మ
െ 1ቁ and 

௑భ,௑మߩ ൌ
ଵ

ொభொమ
ln ቂ1 ൅	ߩ௒భ,௒మ ቀඥ݁

ொభ
మ െ 1ඥ݁ொమమ െ 1ቁቃ. 

The product	ܼ ൌ ଵܻ ଶܻ ൌ ݁௑భ݁௑మ ൌ ݁௑భା௑మ, so the distribution of ln	ሺܼሻ has mean:  

ሾlnሺܼሻሿܧ ൌ ଵܲ ൅ ଶܲ, and variance, ሾlnሺܼሻሿ ൌ ܳ௓
ଶ ൌ ܳଵ

ଶ ൅ ௑భ,௑మܳଵܳଶߩ2 ൅ ܳଶ
ଶ . 

 Therefore, the mean and variance of ܼ ൌ ଵܻ ଶܻ is:  

௓ߤ    ൌ ݁ቀሾ௉భା௉మሿା
భ
మ
ൣொభ

మାଶఘ೉భ,೉మொభொమାொమ
మ൧ቁ, and  5-5 

௓ߪ 
ଶ ൌ ݁൫ଶሾ௉భା௉మሿାൣொభ

మାଶఘ೉భ,೉మொభொమାொమ
మ൧൯ ቀ݁ൣொభ

మାଶఘ೉భ,೉మொభொమାொమ
మ൧ െ 1ቁ  

 

5-6 

Equation 5-5 is an exact solution of the variance of the product of two lognormal 
distributions.  Results of the exact standard deviation using the square-root of the variance 
calculation using Equation 5-5 are compared to a 100,000-trial statistical simulation in 
Table 5-1.  The simulated mean of the product is low compared to the exact result due to 
the inability to correlate the two RVs to exactly	ߩ ൌ 0.5.  The simulated standard deviation 
is slightly lower than the exact result due to uneven sampling of the lognormal PDFs.    

Table 5-1 Analytic and Simulated Results of the Product of Two Lognormal PDFs 

 

Analytic  Simulated 

 ࣆ ࣌  ૛ࢅ,૚ࢅ࣋ ࣆ ࣌  ૛ࢅ,૚ࢅ࣋

ଵܻ  1.000  1.000  0.500  0.999  0.999  0.432 

ଶܻ  1.000  1.000  0.999  0.999   

ଵܻ ଶܻ  1.500  4.243  1.430  3.749   

 

                                                 

42 Lognormal Distributions: Theory and Applications 
 Edwin L. Crow, Kunio Shimizu, 1988. Marcel Dekker, NY, Statistics, textbooks and monographs Series, 
vol. 88, p14-17. 
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When ଵܻ	and ଶܻ	are independent,	ߩ௒భ,௒మ ൌ 0, so the mean and variance of ܼ are: 

௓ߤ    ൌ ݁ቀሾ௉భା௉మሿା
భ
మ
ൣொభ

మାଶொభொమାொమ
మ൧ቁ, and  5-7 

௓ߪ 
ଶ ൌ ݁൫ଶሾ௉భା௉మሿାൣொభ

మାொమ
మ൧൯൫݁ൣொభ

మାொమ
మ൧ െ 1൯  

 

5-8 

To calculate the moments of the square of ଵܻ, we can set ଵܻ ൌ ଶܻ, so ߤ௒భ ൌ ௒భ,௒మߩ ,௒మߤ ൌ 1.  

The resulting mean and variance of ܼ are: 

௓ߤ    ൌ ݁ଶ൫௉భାଶொభ
మ൯, and  5-9 

௓ߪ 
ଶ ൌ ݁൫ଶ௉భାସொభ

మ൯൫݁ൣସொభ
మ൧ െ 1൯  

 

5-10

Additionally, when	ߤ௒భ ൌ 1, and ߪ௒భ ൌ 1 (i.e., ଵܻ is a unit lognormal distribution,	 ଵܻ ൌ

ൣݎܸܽ ሺ1,1ሻ ), thenܮ ଵܻ
ଶ൧ ൌ 60.   

Since	ߪ௒భ ൌ ටܸܽൣݎ ଵܻ
ଶ൧,	ߪ௒భ ൌ √60, or 7.7459667. 

Comparing these results to a statistical simulation, we get similar means but different 
standard deviations as shown in Table 5-2. 

Table 5-2 Analytic and Simulated Results of the Square of Two Lognormal PDFs 

 
Analytic  Simulated 

 ࣆ ࣌ ࣆ  ࣌
 ૚ࢅ 1.000  1.000 1.000 1.005 

૚ࢅ
૛  2.000  7.746 2.010 8.900 

 

The difference between the sigma values from the analytic (exact) answer and the 
simulated (approximate) answer is due to the simulation’s sampling of the lognormal PDF.  
Since none of the error can be attributed to the correlation between random variables (i.e., 
it is a square of a single RV), it must be due to the ability of the simulation to sample the 
large tails of the lognormal PDFs.  Looking at the results of the variance from 10 
simulation runs of 100,000 trials each shows the simulated variance is biased low and there 

is a large standard deviation of results of the variance of	 ଵܻ
ଶ.  This is due to the fact that 

sampling highly skewed distributions will always be difficult for simulations, so 
simulations cannot always be trusted in these situations.  It is best to check your 
simulation’s results to see that the simulation has reproduced the correct Pearson 
correlation coefficient and that the means and standard deviations of the inputs and product 
are correctly computed. 
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Table 5-3 Ten Simulated Sample Runs of Variance of LN PDF Squared  

Simulation 
Run  ૚ࢅሺ࢘ࢇࢂ

૛ሻ
Simulation 

Run  ૚ࢅሺ࢘ࢇࢂ
૛ሻ

1  49.894 6 63.005

2  54.359 7 58.854

3  47.536 8 57.698

4  51.769 9 57.165

5  87.246 10 49.030

 ૚૛ሻࢅሺ࢘ࢇࢂࣆ 57.656 

 ૚૛ሻࢅሺ࢘ࢇࢂ࣌ 11.491 

 

5.3 Product	of	Exponentiated	Lognormal	PDFs	
In some cases, it may become necessary to calculate the product of two lognormal PDFs 
that are exponentiated.  Exponentiation of a lognormal PDF ଵܻ by some constant exponent, 
ܿ,  (i.e., ଵܻ

௖) is equivalent to multiplying its underlying normal distribution by ܿ. 

ଵܻ
௖ ൌ ݁௖௑భ 

If the distribution ଵܺ has mean ଵܲand standard deviation	ܳଵ, then the distribution ܿ ଵܺwill 
have mean ܿ ଵܲand standard deviation	ܿܳଵ.  If we multiply two exponentiated lognormal 
PDFs ଵܻ	and ଶܻ	by exponents ܿ and	݀, we can compute the mean and variance of the 

resulting distribution, ܼ ൌ ଵܻ
௖
ଶܻ
ௗ, using the exponents of the underlying normal 

distributions of ଵܻ	and ଶܻ, which are ଵܺ	and ܺଶ. 

ܼ ൌ ଵܻ
௖
ଶܻ
ௗ ൌ ݁௖௑భ݁ௗ௑మ ൌ ݁ሺ௖௑భାௗ௑మሻ 

With the mean and variance of the underlying normal distribution,  

௭ܲ ൌ ܿ ௑ܲభ ൅ ݀ ௑ܲమ and ܳ௓
ଶ ൌ ܿଶܳ௑భ

ଶ ൅ ௑భ,௑మܿ݀ܳ௑భܳ௑మߩ2 ൅ ݀ଶܳ௑మ
ଶ  

the correlation between the underlying normal PDFs,	ߩ௑భ,௑మ, will be unaffected by the 

affine transformation43 of the underlying normal distribution.  The correlation between the 
lognormal PDFs,	ߩ௒భ,௒మ, will also remain unchanged. The correlation between the variables 

ܷ and ܸ (ߩ௎,௏ሻ, where ܷ ൌ ଵܻ
௖ and ܸ ൌ ଶܻ

ௗ, will be different from that of 	ߩ௒భ,௒మ, however. 

                                                 

43 An affine transformation does not change the properties of the variable(s) undergoing the transformation.  
For example, the correlation between two RVs is unchanged when either (or both) undergo a linear 
transformation.  That linear transformation is considered an affine transformation. 
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5.3.1 Correlation	Between	Exponentiated	Lognormal	PDFs	
Using the derivation above, the exponentiated lognormal RVs undergo a non-affine 
transformation, meaning their relationship to each other changes.  In the case of the 

product of lognormal RVs, ܼ ൌ ܷܸ ൌ ଵܻ
௖
ଶܻ
ௗ, the correlation ߩ௎,௏ is calculated using: 

௎,௏ߩ ൌ
௘ቀ೎೏ഐ೉భ,೉మೂ೉భೂ೉మቁିଵ

ට
௘ቀ೎ೂ೉భቁ

మ

ିଵ
ට
௘ቀ೏ೂ೉మቁ

మ

ିଵ

  

As an example, We will exponentiate two lognormal PDFs ( ଵܻ	and ଶܻ) defined by ܮሺ1,0.5ሻ 
with correlation ߩ௒భ,௒మ ൌ 0.5. We wish to find the correlation,	ߩ௎,௏, where ܷ ൌ ଵܻ

௖, 

ܸ ൌ ଶܻ
ௗ, ܿ ൌ 0.9, and ݀ ൌ 1.2.  First we must find ܳଵand ܳଶ where: 

ܳ௜ ൌ ඨln ൤
ఓೊ೔

మାఙೊ೔
మ

ఓೊ೔
మ ൨ , which results in ܳଵ ൌ 0.4724 and ܳଶ ൌ 0.4724. 

Next we calculate ߩ௑భ,௑మ using ߩ௑భ,௑మ ൌ
ଵ

ொభொమ
ln ቂ1 ൅	ߩ௒భ,௒మ ቀඥ݁

ொభ
మ െ 1ඥ݁ொమమ െ 1ቁቃ. 

௑భ,௑మߩ ൌ
1

ሺ0.4724ሻሺ0.4724ሻ
lnൣ1 ൅	ሺ0.5ሻ൫√1.25 െ 1√1.25 െ 1൯൧ ൌ 0.5278 

Last, we have the correlation between ܷ and ܸ: 

௎,௏ߩ ൌ
௘ሺሾబ.వሿሾభ.మሿሾబ.ఱమళఴሿሾబ.రళమరሿሾబ.రళమరሿሻିଵ

ඥ௘ሺሾబ.వሿሾబ.రళమరሿሻమିଵඥ௘ሺሾబ.రళమరሿሾబ.రళమరሿሻమିଵ
ൌ 0.4951. 

5.4 Product	of	Multiple	Lognormal	PDFs	
In the case where cost-on-cost factors are used in a probabilistic cost estimate, the 
correlation between a WBS element that is estimated using a cost-on-cost factor and its 
base is governed by the expected value of the product of multiple random variables. 

We use the case where we have three random variables representing the multiplicative 
uncertainties of three CERs,	εଵ, εଶ and εଷ.  The products used in the correlation matrix may 
include the following terms:	εଵεଶεଷ, εଵଶεଶ, εଵଶεଶεଷ, among others. 

The expectation of any combination or exponentiation of products of ߝଵ, ,ଶߝ or	ߝଷ is derived 
using a set of jointly dependent lognormally distributed PDFs defined by their respective 
means and variances. In the case of the triple product	ܼ ൌ  ଷ, the mean of theߝଶߝଵߝ
underlying normal distribution formed by the triple product is: 

ሾ݈݊ሺܼሻሿܧ ൌ ∑ ௜ܲ  

and the variance is  
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ሾ݈݊ሺܼሻሿݎܸܽ ൌ ∑ܳ௝
ଶ ൅ ∑ ∑ ௑೔,௑ೖܳ௜ܳ௞௞௜ஷ௞ߩ  , where 

௑೔,௑ೖߩ ൌ
ଵ

ொ೔ொೖ
ln ቂ1 ൅ ఌ೔,ఌೖߩ

൫ඥ݁ொ೔
మ
െ 1ඥ݁ொೖ

మ
െ 1൯ቃ  

௓ߤ    ൌ ݁ቀ∑௉೔ା
భ
మ
∑ொೕ

మା∑ ∑ ఘ೉೔,೉ೖொ೔ொೖೖ೔ಯೖ ቁ, and  5-11

௓ߪ 
ଶ ൌ ݁ቀଶ∑௉೔ା∑ொೕ

మା∑ ∑ ఘ೉೔,೉ೖொ೔ொೖೖ೔ಯೖ ቁ ቀ݁∑ொೕ
మା∑ ∑ ఘ೉೔,೉ೖொ೔ொೖೖ೔ಯೖ െ 1ቁ  

 

5-12

 

5.5 Limitations	of	Statistical	Simulations		
Statistical simulations, due to their inability to perfectly sample correlated random 
variables will produce some error, of course.  To test these errors, we defined three 
lognormally distributed random variables ߝଵ, ,ଶߝ and	ߝଷwith a lognormal PDF, ܮሺ1,0.5ሻ, 
and defined their inter-element correlation,	ߩఌ೔,ఌೖ ൌ 0.5. We then calculated the 

expectations of the products discussed above using the analytic method and with a 
100,000-trial statistical simulation.  The results are shown in Table 5-4.  Over the 10 
different simulation runs, the average of the means (1.414) was less than that of the 
analytic (true) result (1.424). Also, the average of the variances from the 10 runs (5.776) 
was less than that of the analytic (true) result (6.000).  The simulations produced a wide 
range of variances represented by the standard deviation of the simulated variance results 
(0.229). 

Table 5-4 Ten Simulated Sample Runs of Variance of Triple Product of LN PDF  

Simulation 
Run  	ሻࢆሺࡱ ሻࢆሺ࢘ࢇࢂ

Simulation 
Run  	ሻࢆሺࡱ  ሻࢆሺ࢘ࢇࢂ

1  1.409  5.435 6 1.416 6.100 

2  1.412  5.534 7 1.410 5.593 

3  1.418  5.923 8 1.411 5.573 

4  1.417  6.053 9 1.417 5.818 

5  1.415  5.880 10 1.413 5.853 

     

Average  1.414  5.776 Analytic 1.424 6.000 

Std. Dev.  0.003  0.229  
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6 Mellin Transforms 
A Mellin transform is a type of integral transform that allows us to find the moments of 
user-specified random variables or functions of random variables, such as CERs.  This is 
particularly useful in uncertainty analysis because we often need to find the moments of 1) 
the product of two or more independent random variables, and 2) transformations of 
random variables (e.g., exponentiation). 

As with anything that looks “too good to be true”, there are restrictions on its use.  We will 
first define Mellin transforms, show how to use them and provide an example.  The Mellin 
Transform44, 45 of a function f(X), where X is a positive random variable, is defined as: 

 ௑ࣧሺݏሻ ൌ 	ࣧሾ݂ሺܺሻ; ሿݏ ൌ ׬ ,ݔሻ݀ݔ௦ିଵ݂ሺݔ ݔ ൐ 0
ஶ
଴ , where  

௑ࣧሺݏሻ is the Mellin transform of ݂ሺܺሻ, and  
  is the order of the transform ݏ

6-1

As with the Fourier and Laplace transforms, there is a one-to-one correspondence between 
 ݂ሺܺሻ.  When ݂ሺܺሻ is a PDF, we can see the relationship between the Mellin	ሻ andݏ௑ሺܯ
transform of a PDF and the moments about the origin ߤ′ as: 

௦ିଵᇱߤ  ൌ ሾܺ௦ିଵሿܧ ൌ ௑ࣧሺݏሻ  
 

6-2

6.1 Mellin	Transform	Properties	
Mellin transforms allow us to calculate moments of results of operations on independent 
random variables.  Table 6-1 shows the Mellin transforms of simple operations on single 
independent random variables.   

Table 6-1 Operation Properties of Mellin Transform on a PDF 

 Property PDF RV Mellin Transform 
a. Standard ݂ሺݔሻ X ௑ࣧሺݏሻ 
b. Scaling ݂ሺܽݔሻ X ܽሺି௦ሻ ௑ࣧሺݏሻ 
b. Linear ݂ܽሺݔሻ X ܽ ௑ࣧሺݏሻ 
d. Translation ݔ௔݂ሺݔሻ X ௑ࣧሺܽ ൅  ሻݏ
e. Exponentiation ݂ሺݔ௔ሻ X ܽሺିଵሻ ௑ࣧሺݏ/ܽሻ 

 

Table 6-2 shows the Mellin transforms of more complex operations on single and multiple 
independent random variables.   

                                                 

44 Giffin, W.C., Transform Techniques for Probability Modeling, Academic Press, 1975. 
45 Springer, M.D., The Algebra of Random Variables, John Wiley and Sons, 1979. 
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Table 6-2 Mellin Transform of Products and Quotients of Random Variables 

 Random Variable PDF Given गࢆሺ࢙ሻ ൌ 
a. Z=X ݂ሺݔሻ ௑ࣧሺݏሻ 
b. Z=Xb ݂ሺݔሻ ௑ࣧሺܾݏ െ ܾ ൅ 1ሻ 

c. Z=1/X ݂ሺݔሻ ௑ࣧሺ2 െ  ሻݏ
d. Z=XY ݂ሺݔሻ, ݃ሺݕሻ ௑ࣧሺݏሻ ௒ࣧሺݏሻ 

e. Z=X/Y ݂ሺݔሻ, ݃ሺݕሻ ௑ࣧሺݏሻ ௒ࣧሺ2 െ  ሻݏ
f. Z=aXbYc ݂ሺݔሻ, ݃ሺݕሻ ܽሺ௦ିଵሻ ௑ࣧሺܾݏ െ ܾ ൅ 1ሻ ௒ࣧሺܿݏ െ ܿ ൅ 1ሻ
 

6.2 Mellin	Transform	of	the	Uniform	Distribution	
The uniform distribution,	ܷሺܮ,   :ሻ, has a PDF defined byܪ

 ݂ሺݔሻ ൌ 1/ሺܪ െ ;ሻܮ ܮ ൑ ݔ ൑   ,ܪ
 

6-3

and a Mellin transform defined by 

  ࣧሾ݂ሺݔሻ; ሿݏ ൌ
ሺுೞି௅ೞሻ

௦ሺுି௅ሻ
  

 

6-4

6.3 Mellin	Transform	of	the	Triangular	Distribution	
The triangular distribution,	ܶሺܪ,ܯ,ܮሻ, has a PDF defined by:  

 

݂ሺݔሻ ൌ ቐ

ଶሺ௫ି௅ሻ

ሺுି௅ሻሺெି௅ሻ
; 0 ൏ ܮ ൏ ݔ ൑ ܯ

ଶሺுି௫ሻ

ሺுି௅ሻሺுିெሻ
ܯ; ൑ ݔ ൑ ܪ

  

 

6-5

and a Mellin transform defined by 

 ࣧሾ݂ሺݔሻ; ሿݏ ൌ ଶ

ሾሺுି௅ሻ௦ሺ௦ାଵሻሿ
ቄு

ሺுೞିெೞሻ

ሺுିெሻ
െ ௅ሺெೞି௅ೞሻ

ሺெି௅ሻ
ቅ  6-6

6.4 Mellin	Transform	Example	
In this example, we will apply Mellin transforms to a multivariate CER46 with error:  

 ܻ	 ൌ 	ܽ ଵܺ
௕ܺଶ

௖	ߝ, where  
Y is cost, a random variable (RV) 
ܽ, ܾ,	 and ܿ	are constants, ܽ ൌ 0.1, ܾ ൌ 0.95,	 and ܿ ൌ 0.60 
ଵܺ is a cost driver that is a RV, ଵܺ ൌ Tሺ9,10,15ሻ  
ܺଶ is a cost driver that is a RV, ܺଶ ൌ Tሺ30,40,60ሻ  

6-7

                                                 

46 The CER’s cost drivers and inputs are uncorrelated (all	ߩ௜,௝ ൌ 0). 
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ߝ ,is the percent standard error of the CER, a RV ߝ ൌ Nሺ1,0.3ሻ  
 

This CER has two cost drivers that are random variables ( ଵܺ and	ܺଶ) and a CER standard 
percent error,	ߝ.  We will split the problem into pieces; one piece will be the term	݂ሺݔሻ ൌ
ܽ ଵܺ

௕ܺଶ
௖, and the other will be the error term,	ߝ.  

Remember, when	ݏ ൌ 2, we are calculating the first moment (mean) and when	ݏ ൌ 3	we 
are calculating the second raw moment (i.e., about the origin) and have to correct for the 
mean to get the second moment about the mean. 

To solve this problem, we will follow these steps: 

1. Find the appropriate Mellin transforms of a PDF (Equation 6-6)  

2. Calculate the Mellin transforms for each operation as shown in Table 6-1 and 

Table 6-2. 

3. Determine the mean and sigma values from the Mellin transform 

 
In the first step, we need to find the Mellin transform of ݂ሺݔሻ and ߝ for orders ݏ ൌ 2 and 
ݏ ൌ 3, then apply the rule from multiplying RVs ݂ሺݔሻ and	ߝ.  

Let us begin with defining ܯሾ݂ሺݔሻ; 	ሿ forݏ ଵܺ, which is a triangular distribution, so:  

ࣧሾ ଵܺ	; ሿݏ ൌ ࣧሾTሺL,M, Hሻ; ሿݏ ൌ ଶ

ሾሺுି௅ሻ௦ሺ௦ାଵሻሿ
ቄு

ሺுೞିெೞሻ

ሺுିெሻ
െ ௅ሺெೞି௅ೞሻ

ሺெି௅ሻ
ቅ		  

We must now find	ࣧሾ݂ሺݔሻ; 2ሿand	ࣧሾ݂ሺݔሻ; 3ሿ, where	݂ሺݔሻ ൌ 	ܽ ଵܺ
௕ܺଶ

௖.  From Table 6-2, 

ࣧሾ݂ሺݔሻ; ሿݏ ൌ ܽሺ௦ିଵሻ ௑ࣧభ	ሺܾݏ െ ܾ ൅ 1ሻ ௑ࣧమሺܿݏ െ ܿ ൅ 1ሻ, where b=0.95 and c=0.6 

ࣧሾ݂ሺݔሻ; ሿݏ ൌ ܽሺ௦ିଵሻ ௑ࣧభ	ሺ0.95ݏ െ 0.95 ൅ 1ሻ ௑ࣧమሺ0.6ݏ െ 0.6 ൅ 1ሻ  
ࣧሾ݂ሺݔሻ; ܽሺ௦ିଵሻ	ሿ=ݏ ௑ࣧభ	ሺ0.95ݏ ൅ 0.05ሻ ௑ࣧమሺ0.6ݏ ൅ 0.4ሻ 

For	ݏ ൌ 2, ௑ࣧభ	ሺ0.95ݏ ൅ 0.05ሻ ൌ ௑ࣧభ	ሺ1.95ሻ ൌ
ଶ

ሾሺுି௅ሻሺଵ.ଽହሻሺଶ.ଽହሻሿ
൞

ு൫ுሺభ.వఱሻିெሺభ.వఱሻ൯

ሺுିெሻ

െ
௅൫ெሺభ.వఱሻି௅ሺభ.వఱሻ൯

ሺெି௅ሻ

ൢ 

ࣧሾ ଵܺ	; 1.95ሿ ൌ
ଶ

ሾሺଵହିଽሻሺଵ.ଽହሻሺଶ.ଽହሻሿ
ቄ
ଵହ൫ଵହభ.వఱିଵ଴భ.వఱ൯

ሺଵହିଵ଴ሻ
െ

ଽ൫ଵ଴భ.వఱିଽభ.వఱ൯

ሺଵ଴ିଽሻ
ቅ ൌ 10.035  

Using the same formula, for order	ݏ ൌ 2.95,  

ࣧሾ ଵܺ	; 2.95ሿ ൌ ࣧሾTሺ9,10,15ሻ; 2.95ሿ ൌ 101.911. 

Since ௑ࣧమ	ሺ0.6ݏ ൅ 0.4ሻ, we have to find	ࣧሾܺଶ; 1.6ሿ, and ࣧሾܺଶ; 2.2ሿ. ܺଶ is a PDF defined 
by a triangular distribution, ܶሺ30,40,60ሻ, so 

ࣧሾܺଶ; 1.6ሿ ൌ ࣧሾܶሺ30,40,60ሻ; 1.6ሿ ൌ 9.572, and	ࣧሾܺଶ; 2.2ሿ ൌ ࣧሾܶሺ30,40,60ሻ; 2.2ሿ ൌ
92.312. 
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Now we can multiply the terms to find	ࣧሾ݂ሺݔሻ; 2ሿand	ࣧሾ݂ሺݔሻ; 3ሿ 

ࣧሾ݂ሺݔሻ; 2ሿ ൌ ܽሺଵሻ ௑ࣧభ	ሺ1.05ሻ ௑ࣧమሺ1.6ሻ ൌ ሺ0.1ሻሺ10.035	ሻሺ101.911ሻ ൌ 9.606 , and  

ࣧሾ݂ሺݔሻ; 3ሿ ൌ ܽሺଶሻ ௑ࣧభ	ሺ3ሻ ௑ࣧమሺ3ሻ ൌ ሺ0.01ሻሺ9.572ሻሺ92.312ሻ ൌ 94.076. 

The mean and sigma of ݂ሺݔሻ	are: 

௙ሺ௫ሻߤ ൌ 	ࣧሾ݂ሺݔሻ; 2ሿ ൌ 9.606,  

ሻ൯ݔ൫݂ሺݎܸܽ ൌ 	ࣧሾ݂ሺݔሻ; 3ሿ– ሺࣧሾ݂ሺݔሻ; 2ሿሻଶ ൌ 94.076 െ ሺ9.606ሻଶ ൌ 1.8089, and  

௙ሺ௫ሻߪ ൌ ටܸܽݎ൫݂ሺݔሻ൯ ൌ √1.8089 ൌ 1.345. 

Finally, we have to calculate the Mellin transformation of ߝ to complete our example 
problem.  Unfortunately, the Mellin transform for a normal distribution is not defined over 

the entire range, only from 0 to + (i.e., non-negative values), so we must find a way to 
overcome this limitation.  But fortunately, we already know the mean and sigma of ߝ and 
can “back out” ࣧሺߝ; 2ሻ and	ࣧሺߝ; 3ሻ. 

We already know the mean and sigma of ߝ by its definition as the multiplicative standard 
error, ܰሺ1,0.3ሻ.  Given this information,  

ࣧሺߝ; 2ሻ ൌ ఌߤ ൌ 1.0, and  
ࣧሾߝ; 3ሿ ൌ ሻߝሺݎܸܽ ൅ ሺࣧሾߝ, 2ሿሻଶ ൌ ఌଶߪ	 ൅ ఌଶߤ ൌ ሺ1ଶሻ ൅ ሺ0.3ଶሻ ൌ 1.09. 

From Table 6-2,	ࣧሾܻߝ; ሿݏ ൌ ࣧሾܻ; ;ߝሿࣧሾݏ  :, so	ሿݏ

ࣧሾܻ; 2ሿ ൌ ࣧሾ݂ሺݔሻ; 2ሿࣧሾߝ; 2ሿ ൌ ሺ9.606ሻሺ1ሻ ൌ 9.606, and 
ࣧሾܻ; 3ሿ ൌ ࣧሾ݂ሺݔሻ; 3ሿࣧሾߝ; 3ሿ ൌ ሺ94.076ሻሺ1.09ሻ ൌ 102.543. 

The exact mean and sigma values are: 

ሺ௒ఌሻߤ ൌ 	ࣧሾܻ; 2ሿ ൌ 9.606,  

ሺ௒ఌሻߪ ൌ 	ටࣧሾܻ; 3ሿ– ሺࣧሾܻ, 2ሿሻଶ ൌ ඥ102.543 െ ሺ9.606ሻଶ ൌ √10.276 ൌ 3.206. 

 
The mean and standard deviation from a 100,000-trial statistical simulation using the 
parameters specified in Equation 6-7 result in:  

ሺ௒ఌሻߤ̂ ൌ 9.60 , and ߪොሺ௒ఌሻ ൌ 3.19  

Since the Mellin transform method provides the exact value, the differences are due to 
simulation errors.  Indeed, a dump of the trial values for	ࢄ૚,	ࢄ૛, and ࢿ followed by a 
calculation of their inter-element correlations reveals that ࣋ ്  i.e., the correlation matrix) ࡵ
does not equal the identity matrix) as shown in Table 6-3.  This means some of the error in 
the simulation is due to its inability to sample (un)correlated random variables. 

 



ANALYTIC METHOD FOR RISK ANALYSIS 

 
66 

 

 

Table 6-3 Correlation Coefficients from 100,000-Trial Statistical Simulation 

  ࢿ ૚ࢄ ૛ࢄ
 ࢿ 	1.0000 ‐0.0031 ‐0.0111
	૚ࢄ ‐0.0031 1.0000 ‐0.0038
	૛ࢄ ‐0.0111 ‐0.0038 1.0000
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7 Propagation of Errors 
Cost analysts often need to find the moments of the product of two uncorrelated random 
independent variables such as a CER and its percent error. 47  For example,  

ܻ ൌ ݂ሺݔሻߝ; where  

 is a random variable describing the input (e.g., weight) ݔ
݂ሺݔሻ is an estimating relationship with ݔ as an independent variable 
 is a random variable describing the estimating error ߝ

 
The “Propagation of Errors” method allows us to calculate the mean and sigma values of 
the product of two uncorrelated random variables A and B.48  Proof of this is provided in 
Appendix C – Derivations. 

஺஻ߤ  ൌ ஻  7-1ߤ஺ߤ
஺஻ߪ  ൌ ඥሺߤ஺ߪ஻ሻଶ ൅ ሺߪ஺ߤ஻ሻଶ ൅ ሺߪ஺ߪ஻ሻଶ  

 

7-2

For our example problem, we will break the CER and its error into two parts, A and B, 
where ܣ ൌ ݂ሺݔሻ and	ܤ ൌ   ,In this case  .ߝ

஺஻ߤ  ൌ ఌ  7-3ߤ௙ሺ௫ሻߤ
 

஺஻ߪ ൌ ට൫ߤ௙ሺ௫ሻߪఌ൯
ଶ
൅ ൫ߪ௙ሺ௫ሻߤఌ൯

ଶ
൅ ൫ߪ௙ሺ௫ሻߪఌ൯

ଶ
  

 

7-4

Since the multiplicative error has a mean,	ߤఌ ൌ 1, and the standard deviation of the error is 
predefined, the equation reduces to 

஺஻ߤ  ൌ ௙ሺ௫ሻ  7-5ߤ
 

஺஻ߪ ൌ ට൫ߤ௙ሺ௫ሻߪఌ൯
ଶ
൅ ൫ߪ௙ሺ௫ሻ൯

ଶ
൅ ൫ߪ௙ሺ௫ሻߪఌ൯

ଶ
  

 

7-6

Previously, we showed how to statistically sum random variables using FRISK.  Now we 
will show how to perform other operations such as multiplying random variables.  This 
type of operation is particularly necessary when we need to calculate the uncertainty of 
CERs that have multiplicative standard errors.  The propagation of errors allows us to do 
this in a clean, straightforward manner. 

                                                 

47 The random variables representing a CER and its multiplicative error should be uncorrelated. 
48 Engineering Statistics Handbook, National Institute of Standards, Section 2.5.5 
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7.1 Propagation	of	Errors	Example	
For our example, we will estimate the	ߪ ,ߤ and 70th percentile of total cost using the three 
point estimates (originally from the FRISK example from Book (1994) in Table 4-5) and 
estimating errors in Table 7-1.  In this example, estimates are random variables defined by 
triangular distributions, and CER errors are either normal or lognormal random variables 
with	ߤఌ೔ ൌ 1.   

Table 7-1 Propagation of Errors Example 

WBS Element, ࢏  Estimate, ࢌሺ࢞ሻ࢏ CER Error, ࢏ࢿ 

Antenna  T(191,380,1151) N(1,0.20) 

Electronics  T(96,192,582) L(1,0.31) 

Platform  T(33,76,143) L(1,0.40) 

Facilities  T(9,18,27) N(1,0.20) 

Power Distribution  T(77,154,465) N(1,0.35) 

Computers  T(30,58,86) N(1,0.30) 

Environmental Control  T(11,22,66) L(1,0.30) 

Communications  T(58,120,182) N(1,0.30) 

Software  T(120,230,691) L(1,0.30) 

 

To demonstrate this method, we will perform an example calculation using the first WBS 
element.  The Antenna WBS element CER is defined by a triangular distribution, 
ܶሺ191,380,1151ሻ.  Using the calculations from our FRISK example in Table 4-5, 
௙ሺ௫ሻభߤ ൌ 574, and ߪ௙ሺ௫ሻభ ൌ 207.62	.  The Antenna CER has a standard error,	ߝଵ defined by 

a normal distribution,	ܰሺ1,0.20ሻ, so ߤఌభ ൌ 1, and ߪఌభ ൌ 0.2.  Using the propagation of 

errors equations (7-5 and 7-6),  

஺஻ߤ ൌ ఌభߤ௙ሺ௫ሻభߤ ൌ ሺ574ሻሺ1ሻ ൌ 574  

஺஻ߪ ൌ ௙ሺ௫ሻఌభߪ ൌ ඥሾሺ574ሻሺ0.2ሻሿଶ ൅ ሾሺ	207.62ሻሺ1ሻሿଶ ൅ ሾሺ	207.62ሻሺ0.2ሻሿଶ ൌ

ඥሾ114.8ሿଶ ൅ ሾ207.62ሿଶ ൅ ሾ41.52ሿଶ ൌ √13179.04 ൅ 43106.06 ൅ 1724.24 ൌ 240.85  

This result is shown in Table 7-2. Completing these operations for all nine WBS elements 
results in the other figures provided in this table. Note, the mean does not change between 
 ௙ሺ௫ሻ೔ due to the effectsߪ is greater than	௙ሺ௫ሻఌ೔ߪ ௙ሺ௫ሻఌ೔, but the standard deviationߤ	and	௙ሺ௫ሻ೔ߤ

of the estimating error,	ߪఌ೔. Now that we have nine WBS elements expressed as random 

variables with means and sigmas defined, we can use the FRISK method to statistically 
sum them.  Remember from Table 4-5, 	்ߤ௢௧௔௟ ൌ ∑ ௙ሺ௫ሻ೔ߤ

௡
௜ୀଵ ൌ 1756.  We will assume a 

single value for the inter-element correlations,	ߩ ൌ 0.2	, to calculate the total cost sigma, 

௢௧௔௟்ߪ ൌ ට∑ ൫ߪ௙ሺ௫ሻೖ൯
ଶ௡

௞ୀଵ ൅ ∑ߩ2 ∑ ௙ሺ௫ሻఌೕߪ௙ሺ௫ሻఌ೔ߪ
௡
௜ୀଵ௝வ௜ ൌ 476.34.  
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Table 7-2 Propagation of Errors Example Solution 

WBS Element, ܑ  ሻܑܠሺ܎ૄ ો܎ሺܠሻܑ ોઽܑ  ሻઽܑܠሺ܎ૄ ો܎ሺܠሻઽܑ
Antenna  574 207.62 0.20 574  240.85

Electronics  290 105.08 0.31 290  142.07

Platform  84 22.63 0.40 84  41.51 

Facilities  18 3.67 0.20 18  5.20 

Power Distribution  232 83.86 0.35 232  120.37

Computers  58 11.43 0.30 58  21.10 

Environmental Control  33 11.88 0.30 33  15.87 

Communications  120 25.31 0.30 120  44.66 

Software  347 123.68 0.30 347  165.86

TOTAL (not necessarily the sum)  1756 364.93 1756  476.34
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8 Functional Correlation between WBS Elements 
In Section 3.4.2 we stated that correlation can be induced by the functional relationships 
among random variables in an estimating model such as a schedule network or a series of 
cost estimating relationships.  By definition, when an estimating relationship such as 

ܻ ൌ ܽ ଵܺ
௕ܺଶ

௖ߝ	contains a random variable, its probability distribution (ܻ, a dependent 
random variable) is dependent on the probability distributions of its inputs, ܺ݅, (the 
independent random variables) and the estimating error, ߝ.  If the dependent variable (ܻ) is 

a positive function49 of the independent variables (i.e.,	ܻ ൌ ܽ ଵܺ
௕ܺଶ

௖ߝ), then the 
independent and dependent variables will be positively correlated (i.e.,	0 ൏ ௒,௑೔ߩ ൑ 1).  

Likewise, if ܻ is a negative function of an independent variable, they will be negatively 
correlated (i.e.,	െ1 ൑ ௒,௑೔ߩ ൏ 0).  This type of correlation is called “functional correlation” 

(Coleman & Gupta, 1994). There are many types of functional correlations, and if we are 
to use MOM techniques to estimate the probabilistic costs of multiple WBS elements 
(Table 8-1), it requires we have knowledge of these correlations.  In this example, which 
pertains to the first three CERs in Table 8-1, we are interested in the correlation between ܻ 
and its independent variables,	ߩ௒,௑೔. 

Table 8-1 Functional Correlation Example Cost Model 

 ࢏ WBS Element, ࢏  CER, ࢏  Drivers  ࢏ࢄ ࢏ࢿ
1  Systems Engineering, 

Program Management 
Integration and Test 

ଵܻ ൌ 0.498 ଵܺ
଴.ଽߝଵ   PMP 

ܮ~ ቆ
∑ ௜ߤ
ଵ଴
௜ୀଶ 	 ,

	ඥ࣌࣋ࢀ࣌
ቇ  

L(1,0.49) 

  Prime Mission Product 
(PMP) 

∑ ௜ܻ
ଵ଴
௜ୀଶ    Sum of Hardware and 

Software costs 
  0 

2  Antenna  ଶܻ ൌ 34.36ܺଶ௔
଴.ହܺଶ௕

଴.଼ߝଶ   Aperture Diameter (m),  
Frequency (GHz) 

T(2,3,4) 
T(16,17,18) 

L(1,0.30) 

3  Electronics  ଷܻ ൌ 30.06ܺଷ
଴.଼ߝଷ   Frequency (GHz)  T(16,17,18)  L(1,0.40) 

4  Platform  ସܻ ൌ 26.91ܺସ௔
଴.ହܺସ௕

଴.଼ହߝସ   Aperture Diameter (m),  
Number of Axes 

T(2,3,4) 
Constant = 2 

L(1,0.38) 

5  Facilities  ହܻ ൌ 1.64ܺହ
଴.଼ߝହ   Area (m

2)  T(18,20,22)  L(1,0.25) 

6  Power Distribution  ଺ܻ ൌ 0.32ܺ଺
଴.ଽߝ଺   Electrical Power (W)  T(1200,1425,1875)  L(1,0.18) 

7  Computers  ଻ܻ ൌ 0.58ܺ଻
଴.଼଻ߝ଻   MFLOPS  T(180,200,220)  L(1,0.31) 

8  Environmental Control  ଼ܻ ൌ 1.94଼ܺ
଴.ସ଼ߝ   Heat Load (W)  T(1100,1200,1300)  L(1,0.21) 

9  Communications  ଽܻ ൌ 5.62ܺଽ
଴.ଽߝଽ   Data Rate (MBPS)  T(25,30,35)  L(1,0.28) 

10  Software  ଵܻ଴ ൌ 1.38 ଵܺ଴
ଵ.ଶߝଵ଴   eKSLOC  T(80,90,130)  L(1,0.32) 

 

Also, if two CERs	are dependent on the same random variable, ܺ, (such as CERs 2 and 3), 
then those CERs will be functionally correlated to each other.  Also, the common driver 

                                                 

49 A positive function is one where Y increases with X. 
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will be correlated to those CERs.  We will need to know these correlations, particularly 
since these variables are to be statistically summed. 

Another case that is easy to envision is where one CER is a function using the sum of 
multiple WBS elements as its cost driver (i.e., CER 1 in Table 8-1).50  We often refer to 
these types of CERs as “cost-on-cost” functions since the cost of one WBS element is a 
function of the cost of other WBS elements (for example, a CER that estimates program 
management costs and is dependent on the sum of hardware and software prime mission 
product (PMP) costs).  In this case, we will be interested in the correlation between the 
cost-on-cost CER and each of the individual PMP costs. 

These correlations are further complicated when correlated uncertainty terms are used in a 
set of CERs (e.g.,	 ଶܻ ൌ ଶ݂ሺܺሻߝଶ  and	 ଷܻ ൌ ଷ݂ሺܺሻߝଷ).  This is a very complex type of 

functional correlation since there are two dependencies involved.  

Each of these cases involves a calculation of the correlation between different types of 
relationships between random variables.  We require a more formalized approach to 
identifying types of functional correlations that exist in the WBS structure, or for that 
matter a schedule network, and how directly the random variables are related to each other.  
No less important is the “order”, or how closely related two functionally correlated random 
variables are to each other.   In a first order relationship, ܻ is clearly identified as a 
function of		ܺ, such as in a CER.  In a second order relationship, ܻ may be a function of 
݃ሺܺሻ (i.e., the sum of multiple random variables), one of which may be	ܺ.  The third type 
of relationship is one in which two variables are correlated through functional relationships 
of other variables that are correlated. Table 8-2 provides a framework for identifying the 
type and order of functional correlations based on the mathematical solution to 
calculating	ߩ.  

Table 8-2 Formalized Types and Orders of Functional Correlations 

  Order 1 Order 2 

Type I  ܻ ௑,௒ whereߩ ൌ ݂ሺܺሻ ௑,௒ߩ where ܻ ൌ ݂ሺ݃ሺܺሻሻ 
Type II   ௒భ,௒మߩ where  ଵܻ ൌ ଵ݂ሺܺ ሻand 

ଶܻ ൌ ଶ݂ሺܺሻ 
௒భ,௒మߩ where ଵܻ ൌ ଵ݂൫ ଵ݃ሺܺሻ൯	and 

ଶܻ ൌ ଶ݂ሺ݃ଶሺܺሻሻ
Type III  	where	௒భ,௒మߩ ଵܻ ൌ ଵ݂ሺ ଵܺሻ1ߝ, 

ଶܻ ൌ ଶ݂ሺܺଶሻ2ߝ,  
and	2ߝ,1ߝߩ ് 0 or 2ܺ,1ܺߩ ് 0 

௒భ,௒మߩ where ଵܻ ൌ ଵ݂ሺ ଵ݃ሺ ଵܺሻ1ߝሻ, 
ଶܻ ൌ ଶ݂ሺ݃ଶሺܺଶሻ2ߝሻ, 
and 2ߝ,1ߝߩ ് 0, or 2ܺ,1ܺߩ ് 0 

 

With the aid of this formalized framework for segregating the types of functional 
correlations existing in an estimate, we can employ an organized method to find the 

                                                 

50 CER 1 in the example model shown in Table 8-1. 
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equations for the functional correlation for each type and order described above.  The 
method of calculating first order correlation coefficients contains the following steps: 

1) Equate the correlation between two random variables in terms of Equation 4-26. 
2) Determine the components of Equation 4-26. 

a. Find the means of the two RVs 
b. Find the variances of the two RVs 
c. Find the product of the two RVs 
d. Find the expectation of 2c 

3) Rewrite Equation 4-26 in terms of the components found in Steps 2a through 2d. 

Second order correlation coefficients require an intermediate step whereby ݃ሺܺሻ must be 
calculated, followed by the calculations of ߩ௑,௚ሺ௑ሻ	and	ߩ௒,௚ሺ௑ሻ	for Type I correlations,  

 ௒మ,௚ሺ௑ሻఌమ for Type IIIߩ ௒భ,௚ሺ௑ሻఌభ andߩ ௒మ,௚ሺ௑ሻ for Type II correlations, andߩ ௒భ,௚ሺ௑ሻ andߩ

correlations. 

8.1 Type	I‐1	Functional	Correlation	
In cost analysis applications, we are often faced with the problem of computing the Type I-
1 functional correlation between a CER and one of its drivers.  We discussed this case 
when introducing functional correlation, so we will provide a method of calculating	ߩ௑భ,௒, 

where	ܻ ൌ ܽ ଵܺ
௕ܺଶ

௖ߝ	.   

Following the process described above, Step 1:  ߩ௑భ,௒	 ൌ
୉ሾ௑భ௒ሿି୉ሾ௑భሿ୉ሾ௒ሿ

ඥ௏௔௥ሺ௑భሻඥ௏௔௥ሺ௒ሻ
  

Step 2a: Eሾ ଵܺሿ ൌ 	௑భ, which is known sinceߤ ଵܺ is a user-defined distribution 

Eሾܻሿ ൌ Eሾ݂ሺ ଵܺ, ܺଶሻሿ ൌ  ௙, which can be found through expectation methods or throughߤ

the use of Mellin transforms 

Step 2b: ܸܽݎሺ ଵܺሻ		is known since ܺ1 is a user-defined distribution 

ሺܻሻݎܸܽ ൌ 	 ൫ߤ௙ߪఌ൯
ଶ
൅ ൫ߪ௙൯

ଶ
൅ ൫ߪ௙ߪఌ൯

ଶ
 ; where  

 is known by definition	ఌߪ
 was found in Step 2a	௙ߤ

 can be found through expectation methods or through the use of Mellin transforms	௙ߪ

Step 2c: ଵܻܺ ൌ ሺ ଵܺሻ൫ܽ ଵܺ
௕ܺଶ

௖ߝ൯ ൌ ܽ ଵܺ
௕ାଵܺଶ

௖ߝ  

Step 2d: ܧሾ ଵܻܺሿ ൌ ܽൣܧ ଵܺ
௕ାଵܺଶ

௖ߝ൧  

Since ܽ	is a constant and the terms	 ଵܺ
௕ାଵ,	ܺଶ

௖ and ߝ are independent, then 
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ሾܧ ଵܻܺሿ ൌ ൣܧܽ ଵܺ
௕ାଵ൧ܧሾܺଶ

௖ሿܧሾߝሿ  

If we can assume	ܧሾߝሿ ൌ ఌߤ ൌ 1, then	ܧሾܺ1ܻሿ ൌ ܧܽ ቂܺ1
ܾ൅1ቃ2ܺൣܧ

ܿ൧. 

The kth moment of a RV of a known distribution type (i.e., ܧሾܺ௞ሿ	where X is a uniform, 
triangular, normal or lognormal distribution) can be calculated using Mellin transforms or 
through expectation operations found in Appendix B – Expectation Operations. 

Step 3: Combining the terms from steps 1 through 2d we have  

	௑భ,௒ߩ  ൌ
௔ாሾ௑మ

೎ሿ൫ாൣ௑భ
್శభ൧ିாൣ௑భ

್൧ாሾ௑భሿ൯

஢೉భට൫ఓ೑ఙഄ൯
మ
ା൫ఙ೑൯

మ
ା൫ఙ೑ఙഄ൯

మ
  

 

8-1

Equation 8-1 shows that as the magnitude of ߪఌincreases, the magnitude of ߩ௑భ,௒	decreases. 

8.1.1 Type	I‐1	Functional	Correlation	Example	
For this example, we will use CER 6 from Table 8-1 to calculate the Type I-1 functional 
correlation between ଺ܻ and its driver, ܺ଺.  The CER ଺ܻ is defined as 

଺ܻ ൌ 0.32ܺ଺
଴.ଽߝ଺ 

Following the process described above, Step 1:  ߩ௑ల,௒ల	 ൌ
୉ሾ௑ల௒లሿି୉ሾ௑లሿ୉ሾ௒లሿ

ඥ௏௔௥ሺ௑లሻඥ௏௔௥ሺ௒లሻ
  

Step 2a: Eሾܺ଺ሿ ൌ  .௑ల, which is found using Equation 4-1ߤ

Since	ܺ଺ is defined by the triangular PDF, ܶሺ1200,1425,1875ሻ,  

Eሾܺ଺ሿ ൌ ௑లߤ ൌ
ଵଶ଴଴ାଵସଶହାଵ଼଻ହ

ଷ
ൌ 1500  

Eሾ ଺ܻሿ	can be found through expectation methods or through the use of Mellin transforms.  
In this example, we will use expectation methods to compute	Eሾ ଺ܻሿ. 

Eሾ ଺ܻሿ ൌ Eൣ0.32ܺ଺
଴.ଽߝ଺൧ ൌ 0.32Eൣܺ଺

଴.ଽ൧Eሾߝ଺ሿ , and since	Eሾߝ଺ሿ ൌ 1, Eሾ ଺ܻሿ ൌ 0.32Eൣܺ଺
଴.ଽ൧. 

Since ܺ଺ is a triangular PDF, we must find the expectation of a triangular PDF raised to a 
power, which is  

୩൧ܺൣܧ ൌ
ଶ

ሺுି௅ሻሺெି௅ሻ
ቄ
ெೖశమି௅ೖశమ

௞ାଶ
െ ܮ

ெೖశభି௅ೖశభ

௞ାଵ
ቅ ൅

ଶ

ሺுି௅ሻሺுିெሻ
ቄܪ

ுೖశభିெೖశభ

௞ାଵ
െ

ுೖశమିெೖశమ

௞ାଶ
ቅ  

Substituting the parameters L, M, H and k using our example, Eൣܺ଺
଴.ଽ൧ ൌ 721.626  

So Eሾ ଺ܻሿ ൌ ሺ0.32ሻሺ721.626ሻ ൌ 230.920. 
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Step 2b: ܸܽݎሺܺ଺ሻ		is calculated using the square of one half of the population standard 
deviation of the distributions parameters.  This equates to  

ሺܺ଺ሻݎܸܽ ൌ ቀௌ்஽ா௏௉ሺଵଶ଴଴,ଵସଶହ,ଵ଼଻ହሻ
ଶ

ቁ
ଶ
ൌ 19687.5, so ߪ௑ల ൌ √19687.5 ൌ 140.31	

The variance of Y is calculated using the propagation of errors method, since the CER, ௒݂ల, 

and its error are independent RVs. 

ሺܻሻݎܸܽ ൌ 	 ቀߤ௙ೊలߪఌలቁ
ଶ
൅ ቀߪ௙ೊలቁ

ଶ
൅ ቀߪ௙ೊలߪఌలቁ

ଶ
 ; where  

ఌలߪ ൌ 0.18	 (Table 8-1), and ߤ௙ೊల ൌ 	230.920 (found in Step 2a) 

 ௙ೊలcan be found through expectation methods or through the use of Mellin transforms.  Inߪ

this case, we will use the equation for the transformation of a triangular PDF from Section 
4.3.3 to compute this value. 

௙ೊలߪ ൌ

ܾට ଶ

ሺுି௅ሻ
ቂ ଵ

ሺெି௅ሻ
ቄெ

మ೎శమି௅మ೎శమ

ଶ௖ାଶ
െ ܮ ெమ೎శభି௅మ೎శభ

ଶ௖ାଵ
ቅ ൅ ଵ

ሺுିெሻ
ቄܪ ுమ೎శభିெమ೎శభ

ଶ௖ାଵ
െ ுమ೎శమିெమ೎శమ

ଶ௖ାଶ
ቅቃ െ ቀ

ఓ೑
௕
ቁ
ଶ
	  

By substituting the coefficient ܾ ൌ 0.32 and the triangular distribution parameters, ܯ,ܮ 
and ܪ into this equation, we get ߪ௙ೊల ൌ 19.428. 

So ߪ௒ల ൌ ට	ቀߤ௙ೊలߪఌలቁ
ଶ
൅ ቀߪ௙ೊలቁ

ଶ
൅ ቀߪ௙ೊలߪఌలቁ

ଶ
 

௒లߪ ൌ ඥ	ሾሺ230.920ሻሺ0.18ሻሿଶ ൅ ሾ19.428ሿଶ ൅ ሾሺ19.428ሻሺ0.18ሻሿଶ ൌ 46.015  

In Step 2c we calculate the product ܺ଺ ଺ܻ through expansion. 

ܺ଺ ଺ܻ ൌ ሺܺ଺ሻ൫0.32ܺ଺
଴.ଽߝ଺൯ ൌ 0.32ܺ଺

ଵ.ଽߝ଺  

In Step 2d we calculate the expectation of this product. 

ሾܺ଺ܧ ଺ܻሿ ൌ 0.32ܺ଺ൣܧ
ଵ.ଽߝ଺൧ ൌ ଺ܺൣܧ0.32

ଵ.ଽ൧ܧሾߝ଺ሿ  

Since	ܧሾߝ଺ሿ ൌ ఌలߤ ൌ 1, then	ܧሾܺ6ܻ6ሿ ൌ ቂܺ6ܧ0.32
1.9ቃ. 

Using the equation for the kth moment of a triangular distribution, we can compute ܧሾܺ଺ ଺ܻሿ 

ሾܺ଺ܧ ଺ܻሿ ൌ ሺ0.32ሻሺ1090957.67ሻ ൌ 349106.45  

Furthermore, the product ܧሾܺ଺ሿܧሾ ଺ܻሿ ൌ ሺ1500ሻሺ230.920ሻ ൌ 346380.516. 
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Step 3: Combining the terms from Steps 1 through 2d, we have:  

	௑ల,௒లߩ ൌ
ாሾ௑ల௒లሿିாሾ௑లሿாሾ௒లሿ

஢೉ల஢ೊల
ൌ ଷସଽଵ଴଺.ସହିଷସ଺ଷ଼଴.ହଵ଺

ሺଵସ଴.ଷଵሻሺଵଽ.ସଶ଼ሻ
ൌ 0.4222  

8.2 Type	I‐2	Functional	Correlation		
In this case, we wish to find the functional correlation	ߩ௑,௒ between two random variables 

௜ܺ and ܻ where	ܻ ൌ ݂ሺ݃ሺ ௜ܺሻሻߝ௒.   We will assume ݂ሺܹሻ is a CER, specifically a cost-on-
cost function of the summation,	ܹ ൌ ݃ሺ ௜ܺߝ௜ሻ ൌ ∑ ௜ܺ

௡
௜ୀଵ , of WBS elements where ௜ܺ is 

one of the summands.  In this type of functional correlation, we assume ܹ and	ߝ௒  are 
independent random variables. 

ܻ ൌ ሺܽ ൅ ܾܹ௖ሻߝ௒, and ܹ ൌ ݃ሺܺሻ ൌ ∑ ௜ܺ
௡
௜ୀଵ   

Following Step 1 of the process described above, we can express the correlation as:   

	௑,௒ߩ ൌ
୉ሾ௑೔௒ሿି୉ሾ௑೔ሿ୉ሾ௒ሿ

ඥ௏௔௥ሺ௑೔ሻඥ௏௔௥ሺ௒ሻ
ൌ ୉ሾ௑೔௙ሺ௚ሺ௑೔ሻሻሿି୉ሾ௑೔ሿ୉ሾ௙ሺ௚ሺ௑೔ሻሻሿ

ඥ௏௔௥ሺ௑೔ሻඥ௏௔௥ሺ௙ሺ௚ሺ௑೔ሻሻሻ
  

Rewriting these terms, ߩ௑,௒	 ൌ
୉ቂ௑೔ቀ௔ା௕ൣ∑ ௑೔

೙
೔సభ ൧

೎
ቁఌೊቃି୉ሾ௑೔ሿ୉ቂቀ௔ା௕ൣ∑ ௑೔

೙
೔సభ ൧

೎
ቁఌೊቃ

ఙ೉೔ට௏௔௥ቂቀ௔ା௕ൣ∑ ௑೔
೙
೔సభ ൧

೎
ቁఌቃ

  

In Step 2a, we must find the means of ௜ܺ and ܻ. 

Eሾ ௜ܺሿ ൌ  ܺ݅ is a WBS element summand and can be calculated	௑೔, which is known sinceߤ

using either expectation methods or through Mellin transforms. 

Eሾܻሿ ൌ Eሾሺܽ ൅ ܾሾ∑ ௜ܺ
௡
௜ୀଵ ሿ௖ሻߝ௒ሿ ൌ Eሾܽߝ ൅ ܾሾ∑ ௜ܺ

௡
௜ୀଵ ሿ௖ߝ௒ሿ  

This expression can be rewritten as:  

Eሾܻሿ ൌ ܽEሾߝሿ ൅ ܾEሾሺ∑ ௜ܺ
௡
௜ୀଵ ሻ௖ߝ௒ሿEሾߝ௒ሿ ൌ ܽ ൅ ܾEሾሺ∑ ௜ܺ

௡
௜ୀଵ ሻ௖ሿ , since Eሾߝ௒ሿ ൌ 1 

Eሾሺ∑ ௜ܺ
௡
௜ୀଵ ሻ௖ሿ can be found for a lognormal PDF since ܺൣܧ୩൧ ൌ ݁ቀ௞௉ା

భ
మ
ொమ௞మቁ 

In Step 2b, we find the variances of ௜ܺ and ܻ. 

ሺݎܸܽ ௜ܺሻ	is assumed to be known, and ܸܽݎሺܻሻ is calculated using the propagation of errors 
method. 

In Step 2c, we find the product ௜ܻܺ through expansion. 

௜ܻܺ ൌ ௜ܺሺܽ ൅ ܾܹ௖ሻߝ௒ ൌ ܽ ௜ܺߝ௒ ൅ ܾ ௜ܹܺ௖ߝ௒ ൌ ܽ ௜ܺߝ௒ ൅ ௒ߝܾ ௜ܺሺ∑ ௜ܺ
௡
௜ୀଵ ሻ௖  

We must move ௜ܺinto the summation, ∑ ௜ܺ
௡
௜ୀଵ   :௜, which results inߝ
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௜ܻܺ ൌ ܽ ௜ܺߝ௒ ൅ ௒ߝܾ ቀ∑ ௜ܺ

భ
೎ ௜ܺ

௡
௜ୀଵ ቁ

௖
ൌ ܽ ௜ܺߝ௒ ൅ ௒ߝܾ ቀ∑ ௜ܺ

ቂଵାభ
೎
ቃ௡

௜ୀଵ ቁ
௖

  

Now we have separable terms from which to compute the expectation. 

In Step 2d, the expectation is	Eሾ ௜ܻܺሿ ൌ ܽ ௜ܺߝ௒ ൅ ௒ߝܾ ቀ∑ ௜ܺ
ቂଵାభ

೎
ቃ௡

௜ୀଵ ቁ
௖

.  In the next step, we 

face a conundrum.  We already assume that ߝ௒ and ܹ are independent RVs as a condition 
of the regression of the CER,	݂ሺܹሻ.  We may also assume  ௜ܺ contains some multiplicative 
error,	ߝ௜, so that that error must be independent of ݂ሺܹሻand ߝ௒.  In practice, however, this 
case is not always true, since sample correlations do exist between ߝ௜ and ߝ௒.  We must 
assume that independence overrides this situation and that ௜ܺ, ߝ௒ and ߝ௜ are all independent 
RVs.  Given this, the expectation can be reduced to:  

Eሾ ௜ܻܺሿ ൌ ሾܧܽ ௜ܺሿܧሾߝ௒ሿ ൅ ܧ௒ሿߝሾܧܾ ൤ቀ∑ ௜ܺ
ቂଵାభ

೎
ቃ௡

௜ୀଵ ቁ
௖

൨ , and since ܧሾߝ௒ሿ ൌ 1,  

Eሾ ௜ܻܺሿ ൌ ௑೔ߤܽ ൅ ܾE ൤ቀ∑ ௜ܺ
ቂଵାభ

೎
ቃ௡

௜ୀଵ ቁ
௖

൨, which is solvable knowing ቀ∑ ௜ܺ
ቂଵାభ

೎
ቃ௡

௜ୀଵ ቁ is 

lognormally distributed and that	ܺൣܧ୩൧ ൌ ݁ቀ௞௉ା
భ
మ
ொమ௞మቁ. 

Since Eሾ ௜ܺሿ ൌ ௑೔, and Eሾܻሿߤ ൌ ܽ ൅ ܾEሾሺ∑ ௜ܺ
௡
௜ୀଵ ሻ௖ሿ,  the product of the expectations of ௜ܺ 

and ܻ is Eሾ ௜ܺሿEሾܻሿ ൌ ௑೔ሺܽߤ ൅ ܾEሾሺ∑ ௜ܺ
௡
௜ୀଵ ሻ௖ሿሻ ൌ ௑೔ߤܽ ൅ ∑௑೔Eሾሺߤܾ ௜ܺ

௡
௜ୀଵ ሻ௖ሿ  

The term Eሾ ௜ܻܺሿ െ Eሾ ௜ܺሿEሾܻሿ	is reduced to  

Eሾ ௜ܻܺሿ െ Eሾ ௜ܺሿEሾܻሿ ൌ ௑೔ߤܽ ൅ ܾE ൤ቀ∑ ௜ܺ
ቂଵାభ

೎
ቃ௡

௜ୀଵ ቁ
௖

൨ െ ௑೔ߤܽ െ ∑௑೔Eሾሺߤܾ ௜ܺ
௡
௜ୀଵ ሻ௖ሿ  

Eሾ ௜ܻܺሿ െ Eሾ ௜ܺሿEሾܻሿ ൌ ܾ ൜E ൤ቀ∑ ௜ܺ
ቂଵାభ

೎
ቃ௡

௜ୀଵ ቁ
௖

൨ െ ∑௑೔Eሾሺߤ ௜ܺ
௡
௜ୀଵ ሻ௖ሿൠ  

In step 3, we find the functional correlation ߩ௑,௒	by combining terms into the expression 

found in Step 1. 

	௑,௒ߩ ൌ
௕൝୉൥ቆ∑ ௑೔

ቂభశ
భ
೎ቃ೙

೔సభ ቇ
೎

൩ିߤ೉೔
୉ቂ൫∑ ௑೔

೙
೔సభ ൯

೎
ቃൡ

ඥ௏௔௥ሺ௑೔ሻඥ௏௔௥ሺ௒ሻ
  

8.2.1 Type	I‐2	Functional	Correlation	Example	
In this example, we show how to find the functional correlation between CERs 1 and 
 ௒భ,௒మ, in our example model.  CER 1 is a cost-on-cost function of the summation ofߩ	,2

WBS elements 2 through 10 (i.e., ܹ ൌ ∑ ௜ܻ
ଵ଴
௜ୀଶ ) , where the cost of WBS element 2 (i.e., 

ଶܻ) is one of the summands.  The CERs are: 
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ଵܻ ൌ ሺ0.498ሺ∑ ௜ܻ
ଵ଴
௜ୀଶ ሻ଴.ଽሻߝଵ, and ଶܻ ൌ ൫34.36ܺଶ௔

଴.ହܺଶ௕
଴.଼൯ߝଶ, where 

 ,ሺ1,0.3ሻܮ ሺ1,0.45ሻ andܮ ଶare multiplicative errors of the CERs defined byߝ ଵ andߝ
respectively. 

In this type of functional correlation, we assume ܹ (the sum of ௜ܻ) and	ߝଵ  are independent 
lognormal RVs.  Following Step 1 of the process described above, we can express the 
correlation between CERs 1 and 2 as:   

	௒భ,௒మߩ ൌ
୉ሾ௒భ௒మሿି୉ሾ௒భሿ୉ሾ௒మሿ

ඥ௏௔௥ሺ௒భሻඥ௏௔௥ሺ௒మሻ
  

Substituting the functional forms of CERs 1 and 2 into these terms results in: 

	௒భ,௒మߩ  ൌ
୉ቂ௒మቄ௕൫∑ ௐభబ

೔సమ ൯
೎
ቅఌೊభቃି୉ሾ௒మሿ୉ቂቄ௕൫∑ ௐభబ

೔సమ ൯
೎
ቅఌೊభቃ

ఙೊభఙೊమ
   

8.2.1.1 Means of Correlated Random Variables 
In Step 2a, we find ܧሾ ଵܻሿ and ܧሾ ଶܻሿ, which are the means of WBS elements 1 and 2. 

Eሾ ଶܻሿ ൌ  ௒మ, which is calculated using expectation methods, isߤ

Eሾ ଶܻሿ ൌ ൫34.36ܺଶ௔ൣܧ
଴.ହܺଶ௕

଴.଼൯ߝଶ൧ ൌ ଶ௔ܺൣܧ34.36
଴.ହ൧ܺൣܧଶ௕

଴.଼൧  

From the previous example, we calculated Eሾ ଶܻሿ using the product of ݇௧௛ expectation of 
the triangularly distributed independent variables ܺଶ௔and	ܺଶ௕.  The result is repeated here. 

Eሾ ଶܻሿ ൌ ሺ34.36ሻሺ1.728ሻሺ9.646ሻ ൌ 572.706  

Using this method for the remaining CERs in WBS elements 3 to 10 by substituting their 
respective PDFs and CER coefficients, we can calculate their means.  We sum the means 
of CERs 2 through 10 to get the mean of their sum, since	Eሾ∑ ௜ܻሿ ൌ ሾܧ∑ ௜ܻሿ.  These results 
are shown in Table 8-3. 

Table 8-3 Means of CERs of WBS Elements 2 through 10 

 ࢏܀۱۳ ࢏࢈ ࢇ࢏࢞ࣆ ࢈࢏࢞ࣆ ࢏ࢅࣆ
2  34.360 1.728 9.646 572.706 

3  30.060 9.646 ‐ 289.953 

4  26.910 1.728 1.803 83.816 

5  1.640 10.984 ‐ 18.014 

6  0.320 721.626 ‐ 230.920 

7  0.580 100.428 ‐ 58.248 

8  1.940 17.046 ‐ 33.068 

9  5.620 21.346 ‐ 119.965 

10  1.380 251.536 ‐ 347.120 

SUM  ‐ ‐ ‐ 1753.813 
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The mean of CER 1 is defined as	Eሾ ଵܻሿ ൌ Eൣሺܾሺ∑ ௜ܻ
ଵ଴
௜ୀଶ ሻ௖ሻߝ௒భ൧ ൌ ܾEൣሺܹ௖ሻߝ௒భ൧, where ܹ is 

the RV of the sum of WBS elements 2 through 10. 

This expression can be rewritten as	Eሾ ଵܻሿ ൌ ܾEሾܹ௖ሿEൣߝ௒భ൧ ൌ ܾEሾܹ௖ሿ , since Eൣߝ௒భ൧ ൌ 1. 

We can also assume that the sum,	ܹ, represents a lognormal distribution with the 
parameters ௐܲ and ܳௐ that define ܹ’s underlying normal distribution.  ௐܲ and ܳௐ are 
dependent on both the mean and variance of W (i.e., ߤௐ	and ߪௐଶ).   

The term Eሾܹ௖ሿ can be found for a lognormal PDF since ܧሾܹୡሿ ൌ ݁ቀ௖௉ೈାభ
మ
ொೈ

మ௖మቁ, but ௐܲ 
and ܳௐ	are functions of ߤௐ	and ߪௐ.  We must complete Step 2b in order to compute the 
values of the following:  ߪ௒೔, for each ௜ܻ; ߤௐ	and ߪௐ; ௐܲ and ܳௐ; ܧሾܹୡሿ and ߪௐౙ; and, 

finally Eሾ ଵܻሿ and ߪ௒భ. 

8.2.1.2 Standard Deviations of Correlated Random Variables 
Each ߪ௒೔ for CERs 2 through 10 is calculated using the propagation of errors method. They 

are reported as ߪ௒೔ in Table 8-4. 

Table 8-4 Means and Standard Deviations of CERs of WBS Elements 2 through 10 

CER i   ܑ܊  ܉ܑܠૄ ܊ܑܠૄ   ܑ܇ૄ ો૓ܑ ો܉ܑܠ ો܊ܑܠ ો܎ሺܑܠሻ  ોܑ܇
2  34.360  1.728  9.646  572.706 0.3 0.1186 0.1853 40.8333  177.0219

3  30.060  9.646  ‐  289.953 0.4 0.1853 ‐ 5.5711  116.1364

4  26.910  1.728  1.803  83.816 0.38 0.1186 0.0001 5.7539  32.4396

5  1.640  10.984  ‐  18.014 0.25 0.3589 ‐ 0.5885  4.5442

6  0.320  721.626  ‐  230.920 0.18 60.7123 ‐ 19.4279  46.0150

7  0.580  100.428  ‐  58.248 0.31 3.5677 ‐ 2.0692  18.1865

8  1.940  17.046  ‐  33.068 0.21 0.2321 ‐ 0.4503  6.9596

9  5.620  21.346  ‐  119.965 0.28 1.3077 ‐ 7.3494  34.4464

10  1.380  251.536  ‐  347.120 0.32 32.7041 ‐ 45.1317  120.7638

W  ‐  ‐  ‐  1753.813 ‐ ‐ ‐ ‐  331.911

 

We find	ܹߤ in Table 8-3.  The standard deviation of W is found through linear algebra using 

the relationship	ߪௐ ൌ ඥࢅ࣌ࢅ࣋ࢀࢅ࣌.  In this relationship, ࢅ࣌ is the vector of ߪ௒೔for	2 ൑ ݅ ൑

 is the functional correlation between CERs ࢅ࣋ is the transpose of that vector, and ࢀࢅ࣌ ,10
of WBS elements 2 through 10.  The matrix ࢅ࣋ is a 9x9 element sub-matrix of the entire 
10x10 functional correlation matrix.  In this case, we need the lower 9 rows and columns 
to calculate the first row and first column of the full 10x10 matrix.  

In our example, all elements of ࢅ࣋ are Type III-1 or Type II-1 functional correlations, for 
which we provide examples in other parts of this section. 
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ࢅ࣋ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

1 0.1969 0.2309 0.1924 0.1753 0.1927 0.1937 0.1893 0.1785
0.1969 1 0.1961 0.1979 0.1804 0.1983 0.1993 0.1948 0.1837
0.2309 0.1961 1 0.1946 0.1774 0.1950 0.1959 0.1915 0.1806
0.1924 0.1979 0.1946 1 0.1790 0.1968 0.1978 0.1933 0.1823
0.1753 0.1804 0.1774 0.1790 1 0.1794 0.1803 0.1762 0.1662
0.1927 0.1983 0.1950 0.1968 0.1794 1 0.1981 0.1936 0.1827
0.1937 0.1993 0.1959 0.1978 0.1803 0.1981 1 0.1946 0.1836
0.1893 0.1948 0.1915 0.1933 0.1762 0.1936 0.1946 1 0.1794
0.1785 0.1837 0.1806 0.1823 0.1662 0.1827 0.1836 0.1794 1 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Knowing the values of the 1x9 vector ࢅ࣌ and the 9x9 matrix	ࢅ࣋ , the standard deviation of 

ܹ is calculated through the linear algebraic relationship  ߪௐ ൌ ඥࢅ࣌ࢅ࣋ࢀࢅ࣌ ൌ 331.911.   

Using ߤௐ ൌ 1753.813 and	ߪௐ ൌ 331.911, we can calculate ௐܲ and ܳௐ, where: 

ௐܲ ൌ ଵ

ଶ
݈݊ ቀ ఓೈర

ఓೈమାఙೈమቁ ൌ 7.452, and ܳௐ ൌ ට݈݊ ቀ1 ൅
ఙೈమ

ఓೈమቁ ൌ 0.188.  

Now that the parameters of the underlying normal distribution of W are known, we can 
calculate values of ܧሾܹୡሿ and subsequently Eሾ ଵܻሿ and ߪ௒భ. 

First,	ܧሾܹୡሿ ൌ ݁ቀ௖௉ା
భ
మ
ொమ௖మቁ ൌ ݁

൬ሺ଴.ଽሻሺ଻.ସହଶሻାభ
మ
൫ሺ଴.ଽሻሺ଴.ଵ଼଼ሻ൯

మ
൰
ൌ 829.654, and since Eሾ ଵܻሿ ൌ

ܾEሾܹ௖ሿ, then  

Eሾ ଵܻሿ ൌ ௒భߤ ൌ ௙೉భߤ ൌ ሺ0.498ሻሺ829.654ሻ ൌ 413.168.  

We can express	 ଵܻ as ଵܻ ൌ ሺܾሺ∑ ௜ܻ
ଵ଴
௜ୀଶ ሻ௖ሻߝ௒భ ൌ ሺܾܹ௖ሻߝ௒భ ൌ ௐ݂భ

 ௒భ.  Since we need to findߝ

௒భ, and it is formed by the product of ௐ݂భߪ
	and its multiplicative error, we must first find 

௙ೈభߪ
 then account for the multiplicative error.  Since ܹ is exponentiated by the 

coefficient, ܿ, we must calculate the standard deviation of ௐ݂భ
 using ܹ’s underlying 

normal distribution (defined by ௐܲ and ܳௐ), then find the log transformation of the scaled 
normal distribution.  From this process, we obtain: 

௙ೈభߪ
ൌ ܾට݁ቀଶ௖௉ೈା

భ
మ
ሾ௖ொೈሿమቁ൫݁ሾ௖ொೈሿమ െ 1൯ ൌ ሺ0.498ሻට݁ሺଶሺ଴.ଽሻሺ଻.ସହଶሻାሺ଴.ହሻሾሺ଴.ଽሻሺ଴.ଵ଼଼ሻሿమሻ൫݁ሾሺ଴.ଽሻሺ଴.ଵ଼଼ሻሿమ െ 1൯, so   

௙ೈభߪ
ൌ 69.756.   

Using the propagation of errors method, we can compute ߪ௒భ knowing ߤ௙ೈభ
, ௙ೈభߪ

, and ߪఌభ. 

௒భߪ ൌ ටቀߤ௙ೈభ
ఌభቁߪ

ଶ
൅ ቀߪ௙ೈభ

ቁ
ଶ
൅ ቀߪ௙ೈభ

ఌభቁߪ
ଶ
ൌ 201.046. 
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8.2.1.3 Expectation of Product of Correlated Random Variables 

Our work is not complete since we still need to calculate the numerator of the correlation 
equation in Step 1. 

In Step 2c, we find the product ଵܻ ଶܻ to be ଵܻ ଶܻ ൌ ଶܻሺܾሺ∑ ௜ܻ
ଵ଴
௜ୀଶ ሻ௖ሻߝଵ.  

Moving the RV ଶܻ into the summation results in ଵܻ ଶܻ ൌ ܾ ቀ∑ ௜ܻ ଶܻ

భ
೎ଵ଴

௜ୀଶ ቁ
௖
  .ଵߝ

In Step 2d, the expectation of the product ଵܻ ଶܻ is Eሾ ଵܻ ଶܻሿ ൌ ܧ ൤ܾ ቀ∑ ௜ܻ ଶܻ

భ
೎ଵ଴

௜ୀଶ ቁ
௖
 ଵ൨, whichߝ

reduces to Eሾ ଵܻ ଶܻሿ ൌ ܧଵሿߝሾܧܾ ൤ቀ∑ ௜ܻ ଶܻ

భ
೎ଵ଴

௜ୀଶ ቁ
௖
൨.  

Since ܧሾߝଵሿ ൌ 1, we can further reduce this to Eሾ ଵܻ ଶܻሿ ൌ ܧܾ ൤ቀ∑ ௜ܻ ଶܻ

భ
೎ଵ଴

௜ୀଶ ቁ
௖
൨ ൌ   .ሾܸ௖ሿܧܾ

This is solvable knowing the following:  the means and variances of the products, ௜ܸ ൌ

௜ܻ ଶܻ

భ
೎, are calculable; the products can be summed to form the random variable, ܸ, where 

ܸ ൌ ∑ ௜ܸ; and the term ܸ is lognormally distributed, so	ܧሾܸୡሿ ൌ ݁ቀ௖௉ೆା
భ
మ
ொೆ
మ௖మቁ. 

We start with calculating the moments of the product	 ௜ܻ ଶܻ

భ
೎.  As an example, we will set 

݅ ൌ 3 and find the mean and variance of	 ଷܸ ൌ ଷܻ ଶܻ

భ
೎.  Using the method described in 

Section 5.3, we define the lognormal RVs, ଶܻ and	 ଷܻ, using the normally distributed RVs, 
ܼଶ	and	ܼଷ.  

ଷܸ ൌ ଷܻ ଶܻ

భ
೎ ൌ ݁ሺ௓యା௓మ/௖ሻ  

௎ܲ ൌ ௓ܲయ ൅
ଵ

௖ ௓ܲమ and ܳ௎
ଶ ൌ ܳ௓య

ଶ ൅ ௓మ,௓యߩ2
ଵ

௖
ܳ௓మܳ௓య ൅

ଵ

௖మ
ܳ௓మ
ଶ , where 

௭మ,௓యߩ ൌ
ଵ

ொೋమொೋయ
ln ൥1 ൅ ௒మ,௒యߩ

൬ඥ݁ொ೥మ
మ
െ 1ට݁ொೋయ

మ
െ 1൰൩. 

Using Equations 4-5 and 4-6 with values for	ߤ௒మ,	ߪ௒మ,	ߤ௒య, and ߪ௒య from Table 8-4, we 

obtain:  

௭ܲమ ൌ
ଵ

ଶ
݈݊ ൬

ఓೊమ
ర

ఓೊమ
మାఙೊమ

మ൰ ൌ
ଵ

ଶ
݈݊ ቀ

ሺହ଻ଶ.଻଴଺ሻర

ሺହ଻ଶ.଻଴଺ሻమାሺଵ଻଻.଴ଶଶሻమ
ቁ ൌ 6.305,  

ܳ௭మ ൌ ට݈݊ ൬1 ൅
ఙೊమ

మ

ఓೊమ
మ൰ ൌ ට݈݊ ቀ1 ൅

ሺଵ଻଻.଴ଶଶሻమ

ሺହ଻ଶ.଻଴଺ሻమ
ቁ ൌ 0.302,  

௭ܲయ ൌ
ଵ

ଶ
݈݊ ൬

ఓೊయ
ర

ఓೊయ
మାఙೊయ

మ൰ ൌ
ଵ

ଶ
݈݊ ቀ

ሺଶ଼ଽ.ଽହଷሻర

ሺଶ଼ଽ.ଽହଷሻమାሺଵଵ଺.ଵଷ଺ሻమ
ቁ ൌ 5.595,  
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ܳ௭య ൌ ට݈݊ ൬1 ൅
ఙೊయ

మ

ఓೊయ
మ൰ ൌ ට݈݊ ቀ1 ൅

ሺଵଵ଺.ଵଷ଺ሻమ

ሺଶ଼ଽ.ଽହଷሻమ
ቁ ൌ 0.386, and the correlation between this 

pair of normal RVs is calculated as: 

௓మ,௓యߩ ൌ
ଵ

ொ೥మொೋయ
ln ൥1 ൅ ௒మ,௒యߩ

൬ඥ݁ொ೥మ
మ
െ 1ට݁ொೋయ

మ
െ 1൰൩    

௓మ,௓యߩ  ൌ
ଵ

ሺ଴.ଷ଴ଶ		ሻሺ଴.ଷ଼଺ሻ
ln ቂ1 ൅ ሺ0.1961ሻ൫ඥ݁ሺ଴.ଷ଴ଶ	ሻమ െ 1ඥ݁ሺ଴.ଷ଼଺ሻమ െ 1൯ቃ ൌ 0.2067 

So the new distribution formed by the product ଷܻ ଶܻ

భ
೎ has an underlying normal 

distribution,	ܷଷ, where: 

௎ܲయ ൌ ௓ܲయ ൅
ଵ

௖ ௓ܲమ ൌ 5.595 ൅ ଵ

଴.ଽ
6.305 ൌ 12.601, and 

ܷܳ3
ଶ ൌ ܳ௓య

ଶ ൅ ௓మ,௓యߩ2
ଵ

௖
ܳ௓మܳ௓య ൅

ଵ

௖మ
ܳ௓మ
ଶ ൌ ሺ0.386ሻଶ ൅ 2ሺ0.2067ሻ

ଵ

଴.ଽ
ሺ0.386ሻሺ0.302ሻ ൅ ቀ

0.302
଴.ଽ

ቁ
ଶ
ൌ

0.315  

Then, the mean and variance of ଷܸ are found by transforming 	ܷଷ back to a lognormal 
distribution, ଷܸ. 

௏యߤ  ൌ ݁ቀ௉ೆయା
భ
మ
ொೆయ
మ ቁ ൌ ݁

൬ଵଶ.଺଴ଵାభ
మ
ሺ଴.ଷଵହሻ൰

ൌ 347348.652, and 

௏యߪ ൌ ට݁ቀଶ௉ೆయା
భ
మ
ொೆయ
మ ቁ ቀ݁ொೆయ

మ
െ 1ቁ ൌ ට݁൫ଶሺଵଶ.଺଴ଵሻାሺ଴.ହሻሺ0.315ሻ൯ሺ݁0.315 െ 1ሻ ൌ ܧ1.953 ൅ 05. 

We need to repeat this procedure for all ௜ܸ, so after computing the remaining ௜ܸ terms, we 
obtain the results in Table 8-5.  

Since ܸ is to be exponentiated, we will need to find both its mean (	ߤ௏) and standard 
deviation (	ߪ௏) in order to perform the exponentiation.  The mean of ܸ,	ߤ௏, is the sum of 
the elements	ߤ௏೔, which is 2145735.39. 

Table 8-5 Calculation of ࢏ࢂ Distribution Parameters 

ܑ  ܑ܇ૄ   ોܑ܇    ܑ܈۾ ܑ܈ۿ ૉ܈૛,ܑ܈ ܑ܃۾ ܑ܃ۿ  ܑ܄ૄ ોܑ܄

2  572.706  177.022  6.305  0.302 1.0000 13.310 0.638 739228.715  4.730E+05

3  289.953  116.136  5.595  0.386 0.2067 12.601 0.561 347348.652  1.953E+05

4  83.816  32.440  4.359  0.374 0.2414 11.364 0.559 100760.716  5.647E+04

5  18.014  4.544  2.860  0.248 0.1984 9.866 0.455 21360.402  9.737E+03

6  230.920  46.015  5.423  0.197 0.1802 12.428 0.419 272559.191  1.142E+05

7  58.248  18.186  4.018  0.305 0.2000 11.023 0.497 69341.165  3.448E+04

8  33.068  6.960  3.477  0.208 0.1991 10.482 0.429 39108.488  1.678E+04

9  119.965  34.446  4.748  0.281 0.1959 11.753 0.478 142530.987  6.827E+04

10  347.120  120.764  5.793  0.338 0.1863 12.798 0.519 413497.078  2.149E+05
∑    1753.813  331.911  ‐  ‐ ‐ ‐ ‐ 2145735.39  ‐
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The standard deviation of ܸ,	ߪ௏, is calculated through the linear algebraic relationship, 

௏ߪ ൌ ඥࢂ࣌ࢂ࣋ࢀࢂ࣌.  To find this quantity, we need to know the values of the 9x9 correlation 

matrix ࢂ࣋, whose elements are ߩ௏೔,௏ೕ ൌ  ௒೔௒మభ/೎,௒ೕ௒మభ/೎. This correlation matrix is formedߩ

by computing the individual 9x9 elements as follows: 

௒೔௒మభ/೎,௒ೕ௒మభ/೎ߩ ൌ
ாቈቆ௒೔௒మ

భ
೎ቇቆ௒ೕ௒మ

భ
೎ቇ቉ିாሾ௏೔ሿாൣ௏ೕ൧

݆ܸߪܸ݅ߪ
ൌ

ாቈ௒೔௒ೕ௒మ
మ
೎቉ି݆ܸߤܸ݅ߤ

݆ܸߪܸ݅ߪ
  

Fortunately, we have already calculated the values of	ߤ௏೔and	ߪ௏೔ (thus ߤ௏ೕ and ߪ௏ೕas well) 

in Table 8-5, but we need to know ܧ ቂ ௜ܻ ௝ܻ ଶܻ

మ
೎ቃ in order to find ߩ௒೔௒మభ/೎,௒ೕ௒మభ/೎ and complete 

the calculation of ߪ௏ ൌ ඥࢂ࣌ࢂ࣋ࢀࢂ࣌. 

The term ܧ ቂ ௜ܻ ௝ܻ ଶܻ

మ
೎ቃ is calculated through the triple product of lognormal RVs with one 

RV ( ଶܻ) raised to a power – a task that is non-trivial but essential.  Fortunately, we can 
solve this problem using our knowledge of the expectations of products of lognormal RVs.  
The triple product is formed by summing the parameters	ܲ and	ܳ of the underlying normal 

distributions of ௜ܻ , ௝ܻ , and	 ଶܻ
మ
೎, then transforming this sum back to a lognormal distribution 

representing ௜ܻ ௝ܻ ଶܻ

మ
೎.  

We represent the variable of the triple product of ௜ܻ , ௝ܻ , and	 ଶܻ
మ
೎ as a lognormal 

distribution,	 ଶܶ,௜,௝, with the underlying normal distribution ܵଶ,௜,௝ such that	 ଶܶ,௜,௝ ൌ ݁ௌమ,೔,ೕ.  

ܵଶ,௜,௝ is defined by mean ௌܲమ,೔,ೕ and variance ܳௌమ,೔,ೕ
ଶ which are: 

 ௌܲమ,೔,ೕ ൌ ௓ܲ೔ ൅ ௓ܲೕ ൅
ଶ

௖ ௓ܲమ, and  

ܳௌమ,೔,ೕ
ଶ ൌ

ܳ௓೔
ଶ ൅ ܳ௓ೕ

ଶ ൅ ቀଶ
௖
ܳ௓మቁ

ଶ
൅ 2 ቄߩ௓೔,௓ೕܳ௓೔ܳ௓ೕ ൅ ௓೔,௓మܳ௓೔ߩ ቀ

ଶ

௖
ܳ௓మቁ ൅ ௓ೕ,௓మܳ௓ೕߩ ቀ

ଶ

௖
ܳ௓మቁቅ, where 

௓೔,௓ೕߩ ൌ
ଵ

ொೋ೔ொೋೕ
ln ൥1 ൅ ௒೔,௒ೕߩ

൬ට݁ொ೥೔
మ
െ 1ට݁

ொೋೕ
మ

െ 1൰൩ 

For one of the elements where ݅ ൌ 3 and ݆ ൌ 4, ௌܲమ,య,ర ൌ ௓ܲయ ൅ ௓ܲర ൅
ଶ

௖ ௓ܲమ, which becomes  

ௌܲమ,య,ర ൌ 5.595 ൅ 4.359 ൅ ଶ

଴.ଽ
6.305 ൌ 23.965.  

The correlation coefficient of the normal distributions ܼଷand ܼସis a transformation of 
 .௒య,௒ర, which has already been calculatedߩ
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௓య,௓రߩ ൌ
ଵ

ொೋయொೋర
ln ൥1 ൅ ௒య,௒రߩ

൬ඥ݁ொ೥య
మ
െ 1ට݁ொೋర

మ
െ 1൰൩ ൌ

ଵ

ሺ଴.ଷ଼଺ሻሺ଴.ଷ଻ସሻ
ln ቂ1 ൅

ሺ0.1961ሻ൫ඥ݁ሺ଴.ଷ଼଺ሻమ െ 1ඥ݁ሺ଴.ଷ଻ସሻమ െ 1൯ቃ ൌ 0.2078  

We obtain ߩ௓మ,௓య and ߩ௓మ,௓ర similarly. 

௓మ,௓యߩ ൌ
ଵ

ொೋమொೋయ
ln ൥1 ൅ ௒మ,௒యߩ

൬ඥ݁ொ೥మ
మ
െ 1ට݁ொೋయ

మ
െ 1൰൩ ൌ

ଵ

ሺ଴.ଷ଴ଶሻሺ଴.ଷ଼଺ሻ
ln ቂ1 ൅

ሺ0.1969ሻ൫ඥ݁ሺ଴.ଷ଴ଶሻమ െ 1ඥ݁ሺ଴.ଷ଼଺ሻమ െ 1൯ቃ ൌ 0.2067  

௓మ,௓రߩ ൌ
ଵ

ொೋమொೋర
ln ൥1 ൅ ௒మ,௒రߩ

൬ඥ݁ொ೥మ
మ
െ 1ට݁ொೋర

మ
െ 1൰൩ ൌ

ଵ

ሺ଴.ଷ଴ଶሻሺ଴.ଷ଻ସሻ
ln ቂ1 ൅

ሺ0.2309ሻ൫ඥ݁ሺ଴.ଷ଴ଶሻమ െ 1ඥ݁ሺ଴.ଷ଻ସሻమ െ 1൯ቃ ൌ 0.2414  

Using the values of ܳ௓మ, ܳ௓య, ܳ௓ర, ߩ௓య,௓ర, ߩ௓మ,௓య and ߩ௓మ,௓ర we can get the parameters of 

ܵଶ,ଷ,ସ. 

ܳௌమ,య,ర
ଶ ൌ

ܳ௓య
ଶ ൅ ܳ௓ర

ଶ ൅ ቀଶ
௖
ܳ௓మቁ

ଶ
൅ 2 ቄߩ௓య,௓రܳ௓యܳ௓ర ൅ ௓య,௓మܳ௓యߩ ቀ

ଶ

௖
ܳ௓మቁ ൅ ௓ర,௓మܳ௓రߩ ቀ

ଶ

௖
ܳ௓మቁቅ  

ܳௌమ,య,ర
ଶ ൌ ሺ0.386ሻଶ ൅ ሺ0.374ሻଶ ൅ ቀଶ

ሺ଴.ଷ଴ଶሻ

଴.ଽ
ቁ
ଶ
൅ 2 ቄሺ0.2078ሻሺ0.386ሻሺ0.374ሻ ൅

ሺ0.2067ሻሺ0.386ሻ ቀଶ
ሺ଴.ଷ଴ଶሻ

଴.ଽ
ቁ ൅ ሺ0.2414ሻሺ0.374ሻ ቀଶ

ሺ଴.ଷ଴ଶሻ

଴.ଽ
ቁቅ ൌ 1.027  

The mean of ଶܶ,௜,௝ (also known as ܧ ቂ ௜ܻ ௝ܻ ଶܻ

మ
೎ቃ), is ்ߤమ,೔,ೕ ൌ ݁ቀ௉ೄమ,೔,ೕା

భ
మ
ொೄమ,೔,ೕ

మቁ
. 

So in the case where ݅ ൌ 3 and ݆ ൌ ߤ ,4
మ்,య,ర

ൌ ݁ቀ௉ೄమ,య,రା
భ
మ
ொೄమ,య,ర

మቁ ൌ ݁൫ଶଷ.ଽ଺ହାሺ଴.ହሻሺଵ.଴ଶ଻ሻ൯, 

which is ൣܧ ଶܶ,ଷ,ସ൧ ൌ ߤ
మ்,య,ర

ൌ 42744227758. 

Now we can calculate ߩ௒య௒మభ/೎,௒ర௒మభ/೎ ൌ
ாቈ௒య௒ర௒మ

మ
೎቉ି4ܸߤ3ܸߤ

4ܸߪ3ܸߪ
, which is  

௒య௒మభ/೎,௒ర௒మభ/೎ߩ ൌ
ସଶ଻ସସଶଶ଻଻ହ଼ିሺ347348.652ሻሺ100760.716ሻ

ሺ1.953E൅05ሻሺ5.647E൅04ሻ
ൌ 0.5989. 

This process must be repeated for all ݅, ݆ to compute ࢂ࣋ as: 
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ࢅ࣋ ൌ

ۏ
ێ
ێ
ێ
ێ
ێ
ێ
ێ
ۍ

1 0.7036 0.7264 0.8180 0.8609 0.7682 0.8543 0.7877 0.7351
0.7036 1 0.5989 0.6578 0.6761 0.6292 0.6779 0.6394 0.6039
0.7264 0.5989 1 0.6704 0.6909 0.6401 0.6919 0.6510 0.6141
0.8180 0.6578 0.6704 1 0.7702 0.7067 0.7695 0.7203 0.6776
0.8609 0.6761 0.6909 0.7702 1 0.7297 0.7992 0.7450 0.6993
0.7682 0.6292 0.6401 0.7067 0.7297 1 0.7302 0.6858 0.6462
0.8543 0.6779 0.6919 0.7695 0.7992 0.7302 1 0.7450 0.6999
0.7877 0.6394 0.6510 0.7203 0.7450 0.6858 0.7450 1 0.6577
0.7351 0.6039 0.6141 0.6776 0.6993 0.6462 0.6999 0.6577 1 ے

ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ۑ
ې

 

Performing the calculation, ߪ௏ ൌ ඥࢂ࣌ࢂ࣋ࢀࢂ࣌ ൌ 1137353.64. 

Since we know ߤ௏ and ߪ௏, we can calculate the parameters of the underlying normal 
distribution ௎ܲ	and ܳ௎ so we can calculate Eሾ ଵܻ ଶܻሿ. 

bEሾ ଵܻ ଶܻሿ ൌ ܧܾ ൤ቀ∑ ௜ܻ ଶܻ

భ
೎ଵ଴

௜ୀଶ ቁ
௖
൨ ൌ ሾܸ௖ሿܧܾ ൌ ܾ݁ቀ௖௉ೆା

భ
మ
ொೆ

మ௖మቁ ൌ

ሺ0.498ሻ݁
൬ሺ଴.ଽሻሺଵସ.ସ଺ሻାభ

మ
൫ሺ଴.ଽሻሺ଴.ସଽ଼ሻ൯

మ
൰
ൌ 245930  

8.2.1.4 Computing the Type I-2 Functional Correlation 
In step 3, we find the functional correlation ߩ௒భ,௒మ	by combining terms into the expression 

found in Step 1. 

	௒భ,௒మߩ ൌ
୉ሾ௒భ௒మሿି୉ሾ௒భሿ୉ሾ௒మሿ

ඥ௏௔௥ሺ௒భሻඥ௏௔௥ሺ௒మሻ
ൌ ଶସହଽଷ଴ିሺସଵଷ.ଵ଻ሻሺହ଻ଶ.଻ଵሻ

ሺଶ଴ଵ.଴ହሻሺଵ଻଻.଴ଶሻ
ൌ 0.2614  

8.3 Type	II‐1	Functional	Correlation	
In this case, we have two CERs ଵܻ and ଶܻ expressed as functions of the same random 
variable,	ܺ. 

 ୧ܻ 	 ൌ 	 ୧݂ሺܺሻߝ୧ ൌ ሺܽ୧ ൅ ܾ୧ܺ௖౟ሻߝ୧ ; where   
ܽ௜,	ܾ௜, and ܿ௜ are coefficients of the CERs with (ܸܽݎሺ∙ሻ ൌ 0), 
ఌ౟ߤ  ௜ are multiplicative errors of the CERs withߝ ൌ 1, and a 
given value of ߪఌ౟ 
௙౟,ఌ౟ߩ ൌ 0, since CERs and their errors are assumed to be 
independent. 
 

8-2

We can find the Type II-1 functional correlation between these CERs since they share a 
common variable,	ܺ. The correlation between these two CERs is	ߩ௒భ,௒మ	, and based from 

Step 1. 

	௒భ,௒మߩ  ൌ
େ୭୴ሺ௒భ,௒మሻ

ඥ௏௔௥ሺ௒భሻඥ௏௔௥ሺ௒మሻ
  

 

8-3
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Clearly, we will need to find the formulae for Covሺ ଵܻ, ଶܻሻ	and	ܸܽݎሺ ୧ܻሻ to find	ߩ௒భ,௒మ	.   
Using Equation 7-6 from the propagation of errors method, the standard deviation of 

௜ܻ 	is	ߪ௒೔ ൌ 	ඥܸܽݎሺ ௜ܻሻ , where ሺ ୧ܻሻ ൌ 	 ൫ߤ௙౟ߪఌ౟൯
ଶ
൅ ൫ߤఌ౟ߪ௙౟൯

ଶ
൅ ൫ߪ௙౟ߪఌ౟൯

ଶ
 . 

If ଵܻ	 and ଶܻ	are CERs with multiplicative errors, then ߤఌ౟ ൌ 1	and we know ߪఌ౟	from the 

percent standard error of the CER.  ܸܽݎሺ ୧ܻሻ reduces to:  

ሺݎܸܽ  ୧ܻሻ ൌ ൫ߤ௙౟ߪఌ౟൯
ଶ
൅ ൫ߪ௙౟൯

ଶ
൅ ൫ߪ௙౟ߪఌ౟൯

ଶ
   

      

8-4

The terms ߤ௙౟,ߪ௙౟ are computed from Equations 4-28 and 4-29 as follows: 

௙౟ߤ  ൌ ܽ୧ ൅ ܾ୧ܧሾܺ௖౟ሿ     8-5
 

௙౟ߪ ൌ ටܾ୧
ଶܸܽݎሺܺ௖౟ሻ ൌ ܾ୧ඥܸܽݎሺܺ௖౟ሻ  

 

8-6

ሺݎܸܽ  ୧ܻሻ ൌ ఌ౟ߪ
ଶ ൫ܽ୧ଶ ൅ 2ܾ୧ܧሾܺ௖౟ሿ ൅ ܾ୧

ଶܧሾܺ௖౟ሿଶ ൅
ܾ୧
ଶܸܽݎሺܺ௖౟ሻ൯ ൅ ܾ୧

ଶܸܽݎሺܺ௖౟ሻ  
      

8-7

Using the results from Section 4.3.3 and assuming	ܺ		is a triangular distribution,	ܺ ൌ
ܶሺܪ,ܯ,ܮሻ, then:  

௙భߪ ൌ

ܾ୧ට
ଶ

ሺுି௅ሻ
ቂ ଵ

ሺெି௅ሻ
ቄெ

మ೎౟శమି௅మ೎౟శమ

ଶ௖౟ାଶ
െ ܮ ெమ೎౟శభି௅మ೎౟శభ

ଶ௖౟ାଵ
ቅ ൅ ଵ

ሺுିெሻ
ቄܪ ுమ೎౟శభିெమ೎౟శభ

ଶ௖౟ାଵ
െ ுమ೎౟శమିெమ೎౟శమ

ଶ௖౟ାଶ
ቅቃ െ ቀ

ఓ೑౟ି௔౟

௕౟
ቁ
ଶ
   

We need to calculate ߤ௒౟and ߪ௒౟. 

௒౟ߤ ൌ ሾܧ ௜ܻሿ ൌ ሾܧ ୧݂ߝ୧ሿ ൌ ఌ౟ߤ௙౟ߤ ൅          ఌ౟ߪ௙౟ߪ௙౟,ఌ౟ߩ

Since ߤఌ౟ ൌ 1	and	ߩ௙౟,ఌ౟ߪ௙౟ߪఌ౟ ൌ 0, then ߤ௒౟ ൌ  .௙౟ߤ

The standard deviation of ୧ܻ	is calculated using the propagation of errors method: 

௒౟ߪ ൌ ටߪ௙౟
ଶ ൅ ఌ౟ߪ

ଶߤ௙౟
ଶ ൅ ௙౟ߪ

ଶߪఌ౟
ଶ , and ߤ௒౟ ൌ   ఌ౟ߤ௙౟ߤ

The Type II-1 correlation between the CERs is:  

	௒భ,௒మߩ ൌ
େ୭୴ሺ௒భ,௒మሻ

ඥ௏௔௥ሺ௒భሻඥ௏௔௥ሺ௒మሻ
ൌ େ୭୴ሺ௒భ,௒మሻ

ට	ఙೊభ	
మටఙೊమ	

మ
ൌ ୉ሾ௒భ௒మሿି୉ሾ௒భሿ୉ሾ௒మሿ

	ఙೊభ	ఙೊమ	
ൌ

୉ሾ௒భ௒మሿି	ఓೊభ	ఓೊమ	
	ఙೊభ	ఙೊమ	

  

	௒భ,௒మߩ ൌ
୉ሾ௒భ௒మሿି	ఓೊభ	ఓೊమ	

∏ ൬ටఙ೑౟
మାఙഄ౟

మఓ೑౟
మାఙ೑౟

మఙഄ౟
మ൰మ

೔సభ
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Using Step 2c, 

ଵܻ ଶܻ ൌ ሾሺܽଵ ൅ ܾଵݔ௖భሻߝଵሿሾሺܽଶ ൅ ܾଶݔ௖మሻߝଶሿ ൌ ሺߝଵܽଵ ൅ ଶܽଶߝ௖భሻሺݔଵܾଵߝ ൅   ௖మሻݔଶܾଶߝ

Multiplication of terms produces: 

ଵܻ ଶܻ ൌ ܽଵܽଶߝଵߝଶ ൅ ܽଵܾଶߝଵߝଶݔ௖మ ൅ ܽଶܾଵߝଵߝଶݔ௖భ ൅   ௖మݔ௖భݔଶܾଵܾଶߝଵߝ

Calculating the expectation of the terms in Step 2d: 

Eሾ ଵܻ ଶܻሿ ൌ ଶሿߝଵߝሾܽଵܽଶܧ ൅ ௖మሿݔଶߝଵߝሾܽଵܾଶܧ ൅ ௖భሿݔଶߝଵߝሾܽଶܾଵܧ ൅   ௖మሿݔ௖భݔଶܾଵܾଶߝଵߝሾܧ

Separating constant scaling terms: 

Eሾ ଵܻ ଶܻሿ ൌ ܽଵܽଶܧሾߝଵߝଶሿ ൅ ܽଵܾଶܧሾߝଵߝଶݔ௖మሿ ൅ ܽଶܾଵܧሾߝଵߝଶݔ௖భሿ ൅ ܾଵܾଶܧሾߝଵߝଶݔ௖భݔ௖మሿ  

Expectations with the product ሾߝଵߝଶሿ appear consistently, so we will define the product as 
߱, such that 

ଶሿߝଵߝሾܧ ൌ ሾ߱ሿܧ ൌ ఌమߤఌభߤ ൅ ఌమߪఌభߪఌభఌమߩ ൌ 1 ൅  ఌమ, which is a constant defined byߪఌభߪఌభఌమߩ

the CER. 

So, Eሾ ଵܻ ଶܻሿ ൌ ܽଵܽଶܧሾ߱ሿ ൅ ܽଵܾଶܧሾ߱ݔ௖మሿ ൅ ܽଶܾଵܧሾ߱ݔ௖భሿ ൅ ܾଵܾଶܧሾ߱ݔ௖భା௖మሿ. 

We need to find ݔ߱ൣܧ୩൧ ൌ ௫ౡߪఠߪఠ,௫ౡߩ ൅  .୩൧ݔൣܧ	ሾ߱ሿܧ	

Assume	ߩఠ,௫ౡߪఠߪ௫ౡ ൌ 0, so ݔ߱ൣܧ୩൧ ൌ ൫	1 ൅ ݔൣܧ	ఌమ൯ߪఌభߪఌభ,ఌమߩ
୩൧ and  

Eሾ ଵܻ ଶܻሿ ൌ ܽଵܽଶܧሾ߱ሿ ൅ ܽଵܾଶܧሾ߱ሿ	ܧሾݔ௖మሿ ൅ ܽଶܾଵ	ܧሾ߱ሿ	ܧሾݔ௖భሿ ൅ ܾଵܾଶܧሾ߱ሿ	ܧሾݔ௖భା௖మሿ  

Eሾ ଵܻ ଶܻሿ ൌ ሾ߱ሿሺܽଵܽଶܧ ൅ ܽଵܾଶ	ܧሾݔ௖మሿ ൅ ܽଶܾଵ		ܧሾݔ௖భሿ ൅ ܾଵܾଶ	ܧሾݔ௖భା௖మሿሻ  

Eሾ ଵܻ ଶܻሿ ൌ ൫	1 ൅ ఌమ൯ሺܽଵܽଶߪఌభߪఌభ,ఌమߩ ൅ ܽଵܾଶ	ܧሾݔ௖మሿ ൅ ܽଶܾଵ	ܧሾݔ௖భሿ ൅ ܾଵܾଶ	ܧሾݔ௖భା௖మሿሻ  

And we know ܧሾ߱ሿ ൌ ൫	1 ൅   ఌమ൯ andߪఌభߪఌభ,ఌమߩ

୩൧ݔൣܧ ൌ ଶ

ሺுି௅ሻሺெି௅ሻ
ቄெ

ೖశమି௅ೖశమ

௞ାଶ
െ ܮ ெೖశభି௅ೖశభ

௞ାଵ
ቅ ൅ ଶ

ሺுି௅ሻሺுିெሻ
ቄܪ ுೖశభିெೖశభ

௞ାଵ
െ ுೖశమିெೖశమ

௞ାଶ
ቅ  

We can solve	ܧሾݔ௖భሿ,	ܧሾݔ௖మሿ, and ܧሾݔ௖భା௖మሿ using formulas for ݔൣܧ୩൧ and substituting ݇ 

for ܿଵ, ܿଶ, ܿଵ൅ܿଶ.  Formulas for ܺൣܧ୩൧ for different distribution types are located in 

Appendix A – Probability Distributions. 

So if ܺ is defined by a triangular distribution, then we have the following for Step 3: 
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	௒భ,௒మߩ ൌ
൫	ଵାఘഄభ,ഄమఙഄభఙഄమ൯൫௔భ௔మା௔భ௕మ	ாሾ௫

೎మሿା௔మ௕భ	ாሾ௫೎భሿା௕భ௕మ	ாሾ௫೎భశ೎మሿ൯ି	ఓ೑భ	ఓ೑మ	

∏ ൬ටఙ೑౟
మାఙഄ౟

మఓ೑౟
మାఙ೑౟

మఙഄ౟
మ൰మ

೔సభ

  

Of course, not every function will have the form, ୧ܻ 	 ൌ 	 ୧݂ሺxሻߝ୧ ൌ ሺܽ୧ ൅ ܾ୧ݔ௖౟ሻߝ୧, so we will 
consider three simplified cases.  

Case 1:  if	ܿଵ ൌ 1, and ܿଶ ൌ 1 then ୧ܻ 	 ൌ ሺܽ୧ ൅ ܾ୧ݔሻߝ୧ 

	௒భ,௒మߩ ൌ
൫	ଵାఘഄభ,ഄమఙഄభఙഄమ൯൫௔భ௔మାఓೣሾ௔భ௕మ	ା௔మ௕భ	ሿ	ା௕భ௕మ	ாൣ௫

మ൧൯ି	ఓ೑భ	ఓ೑మ	

∏ ൬ටఙ೑౟
మାఙഄ౟

మఓ೑౟
మାఙ೑౟

మఙഄ౟
మ൰మ

೔సభ

  

Case 2:  if	ܽଵ ൌ 0, and ܽଶ ൌ 0 then ୧ܻ 	 ൌ ܾ୧ݔ௖౟ߝ୧ 

	௒భ,௒మߩ ൌ
൫	ଵାఘഄభ,ഄమఙഄభఙഄమ൯൫௕భ௕మ	ாሾ௫

೎భశ೎మሿ൯ି	ఓ೑భ	ఓ೑మ	

∏ ൬ටఙ೑౟
మାఙഄ౟

మఓ೑౟
మାఙ೑౟

మఙഄ౟
మ൰మ

೔సభ

  

Special Case 3:  if 	ܽଵ ൌ 0, and ܽଶ ൌ 0; and ߪఌభ ൌ 0 and ߪఌమ ൌ 0; then	 ୧ܻ 	ൌ ܾ୧ݔ௖౟, which 

is the case from Garvey (2000).51 

	௒భ,௒మߩ ൌ
൫௕భ௕మ	ாሾ௫೎భశ೎మሿ൯ି	ఓ೑భ	ఓ೑మ	

ఙ೑భఙ೑మ
  

8.3.1 Common	Predecessor	Functional	Correlation	
In the case of a schedule network with parallel tasks, we are faced with the situation 
whereby we must compute the functional correlation between two tasks T1 and T2 that 
have the same predecessor,	ܲ, that has a finish date ܲܨ.  Assume the durations of T1 and 
T2 (1ܦ and	2ܦ, respectively) are correlated by	ߩ஽భ,஽మ.  The start dates of T1 and T2 are 1ܨ 

and 2ܨ respectively.  The finish dates of T1 and T2 are 1ܨ ൌ ܲܨ ൅ 2ܨ and 1ܦ ൌ ܲܨ ൅   .2ܦ

The resulting standard deviations of the finish dates are 1ܨߪ ൌ ටܲܨ
2 ൅ 1ܦ

2 and	2ܨߪ ൌ

ටܲܨ
2 ൅ 2ܦ

2.   

Using Step 1, the correlation between 1ܨ and 2ܨ is expressed mathematically as: 

ிభ,ிమߩ ൌ
ாሾிభிమሿିாሾிభሿாሾிమሿ

ఙಷభఙಷమ
  

Step 2a:  if ߤிభ ൌ ிುߤ ൅ ிమߤ	and	஽భߤ ൌ ிುߤ ൅  ஽మ , thenߤ

2ܨߤ1ܨߤ ൌ ܲܨߤ
2 ൅ 2ܦߤܲܨߤ ൅ 1ܦߤܲܨߤ ൅ 2ܦߤ1ܦߤ ൅   .2ܦߪ1ܦߪ2ܦ,1ܦߩ

                                                 

51 Garvey, P. R. (2000). Probability Methods for Cost Uncertainty Analysis: A Systems Engineering 
Perspective. New York, NY: Marcel Dekker. 
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Step 2b:  the standard deviations of  1ܨ and 2ܨ	are 

1ܨߪ ൌ ටܲܨߪ
ଶ ൅ 1ܦߪ

ଶ  and	2ܨߪ ൌ ටܲܨߪ
ଶ ൅ 2ܦߪ

ଶ.  

Step 2c: The first expectation term requires expansion of the product	ܨଵܨଶ, which is 

2ܨ1ܨ ൌ ሺܲܨ ൅ ܲܨ1ሻሺܦ ൅ 2ሻܦ ൌ ܲܨ
2 ൅ 2ܦܲܨ ൅ 1ܦܲܨ ൅   2ܦ1ܦ

Step 2d:  then the product moment is  

ଶሿܨଵܨሾܧ ൌ ௉ܨൣܧ
ଶ൧ ൅ ଶሿܦሾܧ௉ሿܨሾܧ ൅ ଵሿܦሾܧ௉ሿܨሾܧ ൅   ଶሿܦଵܦሾܧ

Since	ܨൣܧ௉
ଶ൧ ൌ ிುߤ

ଶ ൅ ிುߪ
ଶ,  

ଶሿܨଵܨሾܧ ൌ ிುߤ
ଶ ൅ ிುߪ

ଶ ൅ ஽మߤிುߤ ൅ ஽భߤிುߤ ൅ ஽మߤ஽భߤ ൅   ஽మߪ஽భߪ஽భ,஽మߩ

Step 3:  the correlation between the two finish dates is then 

ிభ,ிమߩ

ൌ
ிುߤ

ଶ ൅ ிುߪ
ଶ ൅ ஽మߤிುߤ ൅ ஽భߤிುߤ ൅ ஽మߤ஽భߤ ൅ ஽మߪ஽భߪ஽భ,஽మߩ െ ிುߤ

ଶ െ ஽మߤிುߤ െ ஽భߤிುߤ െ ஽మߤ஽భߤ
ிమߪிభߪ

 

Through cancellation of terms, we arrive at Equation 8-8 - a useful relationship in schedule 
uncertainty analysis. 

ிభ,ிమߩ  ൌ
ఙಷು

మାఘವభ,ವమఙವభఙವమ

ටఙಷು
మାఙವభ

మටఙಷು
మାఙವమ

మ
 , 

 

8-8

8.3.2 Type	II‐1	Functional	Correlation	Example	
For this example we will calculate the functional correlation between two CERs ( ଶܻ 
and	 ଷܻ) that share a common cost driver (ܺ ൌ ܺଶ௕ ൌ ܺଷ), which is defined as the frequency 
of operation.  The CERs are defined as: 

ଶܻ ൌ 34.36ܺଶ௔
଴.ହܺଶ௕

଴.଼ߝଶ  and ଷܻ ൌ 30.06ܺଷ
଴.଼ߝଷ. 

They share the random variable,	ܺ, where	ܺ ൌ ܶሺ16,17,18ሻ; and the CER uncertainties are 
ఌమߪ ൌ 0.3, ఌయߪ ൌ 0.4, and ߩఌభ,ఌమ ൌ 0.2.  The other driver of CER ଶܻ is ܺଶ௔, which is 

defined by a triangular distribution ܶሺ2,3,4ሻ. 

When statistically summing these CERs in a WBS we need to find the functional 
correlation, ߩ௒మ,௒య. 

In the first step of the calculation process, we define the correlation between the CERs as 
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	௒మ,௒యߩ  ൌ
ாሾ௒మ௒యሿିாሾ௒మሿாሾ௒యሿ

ఙೊమఙೊయ
 

In Step 2a, we find the means of ଶܻand ଷܻ. 

ሾܧ ଶܻሿ ൌ ଶ௔ܺൣܧ34.36
଴.ହ൧ܺൣܧଶ௕

଴.଼൧ܧሾߝଶሿ, and ሾ ଷܻሿ ൌ ଷܺൣܧ30.06
଴.଼൧ܧሾߝଷሿ 

Since ܧሾߝଶሿ ൌ 1	and ܧሾߝଷሿ ൌ 1,	 

ሾܧ ଶܻሿ ൌ ଶ௔ܺൣܧ34.36
଴.ହ൧ܺൣܧଶ௕

଴.଼൧, and ܧሾ ଷܻሿ ൌ ଷܺൣܧ30.06
଴.଼൧ 

Using the relationship for the expectation of a triangular PDF raised to a power, k, and 
substituting the parameters of the triangular PDF, we get  

ଶ௔ܺൣܧ
଴.ହ൧ ൌ ଶ௕ܺൣܧ ,1.728

଴.଼൧ ൌ 9.646, and through similarity ܺൣܧଷ
଴.଼൧ ൌ 9.646 

The means of ଶܻ and ଷܻ are, therefore, 

ሾܧ ଶܻሿ ൌ ሺ34.36ሻሺ1.728ሻሺ9.646ሻ ൌ 572.706, and 

ሾܧ ଷܻሿ ൌ ሺ30.06ሻሺ9.646ሻ ൌ 289.953. 

In Step 2b, we find the standard deviations of ଶܻ	and ଷܻ.  Using the relationship for the 
variance of a triangular PDF raised to a power, ݇, and substituting the parameters of the 
triangular PDF, we get 

൫ܺଶ௔ݎܸܽ
଴.ହ൯ ൌ ൫ܺଶ௕ݎܸܽ ,0.01407

଴.଼൯ ൌ 0.03435, and ܸܽݎ൫ܺଷ
଴.଼൯ ൌ 0.03435. 

We need to combine the independent variables in CER ଶܻ to find ܸܽݎ൫ ௑݂మ൯. 

൫ݎܸܽ ௑݂మ൯ ൌ

ሺ34.36ሻଶൣܧଶൣܺଶ௕
଴.଼൧ܸܽݎ൫ܺଶ௔

଴.ହ൯ ൅ ଶൣܺଶ௔ܧ
଴.ହ൧ܸܽݎ൫ܺଶ௕

଴.଼൯ ൅ ൫ܺଶ௔ݎܸܽ
଴.ହ൯ܸܽݎ൫ܺଶ௕

଴.଼൯൧  

This results in ܸܽݎ൫ ௑݂మ൯ ൌ 1667.360.  Combining ܸܽݎ൫ ௑݂మ൯ with the variance of the error 

term using the propagation of errors method results in:  

ሺݎܸܽ ଶܻሻ ൌ ൫ݎܸܽൣ ௑݂మ൯ ൅ ଶ൫ܧ ௑݂మ൯ܸܽݎሺߝଶሻ ൅ ൫ݎܸܽ ௑݂మ൯ܸܽݎሺߝଶሻ൧ ൌ 31336.746  

Similarly, 

ሺݎܸܽ ଷܻሻ ൌ ൫ݎܸܽൣ ௑݂య൯ ൅ ଶ൫ܧ ௑݂య൯ܸܽݎሺߝଷሻ ൅ ൫ݎܸܽ ௑݂య൯ܸܽݎሺߝଷሻ൧ ൌ 13487.670. 

௒మߪ ൌ √31336.746		 ൌ 177.0219 and ߪ௒య ൌ √13487.670	 ൌ 116.136 

In Step 2c, we find the product ଶܻ ଷܻ, which is 
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ଶܻ ଷܻ ൌ ൫34.36ܺଶ௔
଴.ହܺଶ௕

଴.଼ߝଶ൯൫30.06ܺଷ
଴.଼ߝଷ൯ ൌ ሺ34.36ሻሺ30.06ሻ൫ܺଶ௔

଴.ହ൯൫ܺଶ௕
ଵ.଺൯ሺߝଶߝଷሻ   

ଶܻ ଷܻ ൌ 1032.862൫ܺଶ௔
଴.ହ൯൫ܺଶ௕

ଵ.଺൯ሺߝଶߝଷሻ 

ଶ௕ܺൣܧ
ଵ.଺൧ ൌ 93.076 

Following Step 2d, the expectation of this product is 

ሾܧ  ଶܻ ଷܻሿ ൌ ଶ௔ܺൣܧ1032.862
଴.ହ൧ܺൣܧଶ௕

ଵ.଺൧ܧሾߝଶߝଷሿ, and ܧሾߝଶߝଷሿ ൌ 1 ൅  ఌయߪఌమߪఌమ,ఌయߩ

Using inputs and previously calculated values, this becomes  

ሾܧ ଶܻ ଷܻሿ ൌ ሺ1032.862ሻሺ1.728ሻሺ93.076ሻ൫1 ൅ ሺ0.2ሻሺ0.3ሻሺ0.4ሻ൯ ൌ 170106.250  

The product ܧሾ ଶܻሿܧሾ ଷܻሿ is  

ሾܧ ଶܻሿܧሾ ଷܻሿ ൌ ሺ572.706ሻሺ289.953ሻ ൌ 166058.082 

Combining these values into ߩ௒భ,௒మ	results in 

	௒భ,௒మߩ ൌ
ாሾ௒మ௒యሿ	ିாሾ௒మሿாሾ௒యሿ

ఙೊమఙೊయ
ൌ ଵ଻଴ଵ଴଺.ଶହ଴	ିଵ଺଺଴ହ଼.଴଼ଶ

ሺଵ଻଻.଴ଶଶሻሺଵଵ଺.ଵଷ଺ሻ
ൌ ସ଴ସ଼.ଵ଺଼

ଵଽଽହଽ.଻ହଵ	
ൌ 0.1969  

8.3.3 Type	II‐1	Functional	Correlation	between	Multivariate	Functions		
What is the correlation between two CERs that have two RVs and share one RV in 
common? 

ଵܻ 	ൌ 	 ଵ݂ሺv, wሻߝ୧ ൌ ሺܽଵ ൅ ܾଵݔ௖భݓௗభሻߝଵ , and ଶܻ 	ൌ 	 ଶ݂ሺu,wሻߝ୧ ൌ ሺܽଶ ൅ ܾଶݔ௖మݑௗమሻߝଶ ; 
where  

	ܽଵ,	ܾଵ, and ܿଵ are coefficients of the CERs with (ܸܽݎሺ∙ሻ ൌ 0),  

ఌ౟ߤ  ௜ are multiplicative errors of the CERs withߝ  ൌ 1, and  

௙౟,ఌ౟ߩ ൌ 0, since CERs and their errors are assumed to be independent. 

	௒భ,௒మߩ ൌ
୉ሾ௒భ௒మሿି	ఓೊభ	ఓೊమ	

	ఙೊభ	ఙೊమ	
   

ଵܻ ଶܻ ൌ ሾሺܽଵ ൅ ܾଵݔ௖భݓௗభሻߝଵሿሾሺܽଶ ൅ ܾଶݔ௖మݑௗమሻߝଶሿ ൌ ሺߝଵܽଵ ൅ ଶܽଶߝௗభሻሺݓ௖భݔଵܾଵߝ ൅
  ௗమሻݑ௖మݔଶܾଶߝ

ଵܻ ଶܻ ൌ ଶܽଵܽଶߝଵߝ ൅ ௗమݑ௖మݔଶܽଵܾଶߝଵߝ ൅ ௗభݓ௖భݔଶܽଶܾଵߝଵߝ ൅   ௗమݑ௖మݔௗభݓ௖భݔଶܾଵܾଶߝଵߝ

ሾܧ ଵܻ ଶܻሿ ൌ ܽଵܽଶܧሾߝଵߝଵሿ ൅ ௗమሿݑ௖మݔሾܧଵሿܽଵܾଶߝଵߝሾܧ ൅ ௗభሿݓ௖భݔሾܧଵሿܽଶܾଵߝଵߝሾܧ ൅
  ௗమሿݑ௖మݔௗభݓ௖భݔሾܧଵሿܾଵܾଶߝଵߝሾܧ
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ଶሿߝଵߝሾܧ ൌ ሾ߱ሿܧ ൌ ఌమߤఌభߤ ൅ ఌమߪఌభߪఌభఌమߩ ൌ 1 ൅   ఌమ , andߪఌభߪఌభఌమߩ

ሾܧ ଵܻ ଶܻሿ ൌ
ሾ߱ሿሼܽଵܽଶܧ ൅ ܽଵܾଶܧሾݔ௖మሿܧሾݑௗమሿ ൅ ܽଶܾଵܧሾݔ௖భሿܧሾݓௗభሿ ൅ ܾଵܾଶܧሾݔ௖భା௖మሿܧሾݓௗభሿܧሾݑௗమሿሽ  

௒౟ߪ ൌ ටߪ௙౟
ଶ ൅ ఌ౟ߪ

ଶߤ௙౟
ଶ ൅ ௙౟ߪ

ଶߪఌ౟
ଶ , and ߤ௒౟ ൌ   ௙౟ߤ

௙భߤ ൌ ܽଵ ൅ ܾଵܧሾݔ௖భݓௗభሿ, and ߤ௙మ ൌ ܽଶ ൅ ܾଶܧሾݔ௖మݑௗమሿ 

௙భߪ ൌ ܾଵඥܸܽݎሺݔ௖భݓௗభሻ, and ߪ௙మ ൌ ܾଶඥܸܽݎሺݔ௖మݑௗమሻ 

ௗభሻݔ௖భݓሺݎܸܽ ൌ ଶௗభሿݓଶ௖భݔሾܧ െ ሺܧሾݔ௖భݓௗభሿሻଶ ൌ ଶௗభሿݓሾܧଶ௖భሿݔሾܧ െ ሺܧሾݔ௖భሿܧሾݓௗభሿሻଶ  

௙భߪ ൌ ܾଵඥܧሾݔଶ௖భሿܧሾݓଶௗభሿ െ ሺܧሾݔ௖భሿܧሾݓௗభሿሻଶ  

ௗమሻݓ௖మݑሺݎܸܽ ൌ ଶௗమሿݑଶ௖మݔሾܧ െ ሺܧሾݔ௖మݑௗమሿሻଶ ൌ ଶௗమሿݑሾܧଶ௖మሿݔሾܧ െ ሺܧሾݔ௖మሿܧሾݑௗమሿሻଶ  

௙మߪ ൌ ܾଶඥܧሾݔଶ௖మሿܧሾݑଶௗమሿ െ ሺܧሾݔ௖మሿܧሾݑௗమሿሻଶ 

	
	௒భ,௒మߩ ൌ
൫	ଵାఘഄభ,ഄమఙഄభఙഄమ൯൛௔భ௔మା௔భ௕మாሾ௫

೎మሿாൣ௨೏మ൧ା௔మ௕భாሾ௫೎భሿாൣ௪೏భ൧ା௕భ௕మாሾ௫೎భశ೎మሿாൣ௪೏భ൧ாൣ௨೏మ൧ൟି	ఓ೑భ	ఓ೑మ	

∏ ൬ටఙ೑౟
మାఙഄ౟

మఓ೑౟
మାఙ೑౟

మఙഄ౟
మ൰మ

೔సభ

  

If	ݑ and ݓ are constants; and if ݑ ൌ 1 and	ݓ ൌ 1, then  

	௒భ,௒మߩ ൌ
൫	ଵାఘഄభ,ഄమఙഄభఙഄమ൯ሼ௔భ௔మା௔భ௕మாሾ௫

೎మሿሺଵሻା௔మ௕భாሾ௫೎భሿሺଵሻା௕భ௕మாሾ௫೎భశ೎మሿሺଵሻሺଵሻሽି	ఓ೑భ	ఓ೑మ	

∏ ൬ටఙ೑౟
మାఙഄ౟

మఓ೑౟
మାఙ೑౟

మఙഄ౟
మ൰మ

೔సభ

  

	௒భ,௒మߩ ൌ
൫	ଵାఘഄభ,ഄమఙഄభఙഄమ൯ሼ௔భ௔మା௔భ௕మாሾ௫

೎మሿା௔మ௕భாሾ௫೎భሿା௕భ௕మாሾ௫೎భశ೎మሿሽି	ఓ೑భఓ೑మ	

∏ ൬ටఙ೑౟
మାఙഄ౟

మఓ೑౟
మାఙ೑౟

మఙഄ౟
మ൰మ

೔సభ

 , which is the 

same result as for the single variable CER cases. 

8.4 Type	II‐2	Functional	Correlation	
This type of functional correlation occurs when two nested functions share one or more 
RVs in common.  This occurs in a resource-loaded schedule where costs are derived from 
particular task durations. 

Consider a simple case of the cost of a project with three WBS elements where the total 
cost is the value ்ܺ௢௧. 

்ܺ௢௧ ൌ ଵܺ ൅ ܺଶ ൅ ܺସ, where ௜ܺ 	is the cost of WBS element ݅. 
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Now consider the schedule duration of the project, D, where its total duration is 

௢௧்ܦ ൌ ଵܦ ൅ ଷܦ ൅  .݅ is the cost of task	௜ܦ ସ, whereܦ

We also know that the costs of WBS elements 1, 2, and 4 are their respective durations 
multiplied by a rate, ݎ௜, where ௜ܺ ൌ 	 .௜ݎ௜ܦ

Following Step 1 of the functional correlation calculation process, the correlation between 
total cost and total schedule duration can be expressed as: 

௑೅೚೟,஽೅೚೟ߩ ൌ
௢௧ሿ்ܦሾ்ܺ௢௧ܧ െ ௢௧ሿ்ܦሾܧሾ்ܺ௢௧ሿܧ

஽೅೚೟ߪ௑೅೚೟ߪ
 

In Steps 2a and 2b we calculate ܧሾ்ܺ௢௧ሿ, ሾ்ܦ௢௧ሿ, ߪ௑೅೚೟, and ߪ஽೅೚೟. 

In Step 2c the product ்ܺ௢௧்ܦ௢௧ is  

்ܺ௢௧்ܦ௢௧ ൌ ଵܺሺܦଵ ൅ ଷܦ ൅ ସሻܦ ൅ ܺଶሺܦଵ ൅ ଷܦ ൅ ସሻܦ ൅ ܺସሺܦଵ ൅ ଷܦ ൅  ସሻܦ

்ܺ௢௧்ܦ௢௧ ൌ ଵܺܦଵ ൅ ଵܺܦଷ ൅ ଵܺܦସ ൅ ܺଶܦଵ ൅ ܺଶܦଷ ൅ ܺଶܦସ ൅ ܺସܦଵ ൅ ܺସܦଷ ൅ ܺସܦସ 

In Step 2d, we calculate  

௢௧ሿ்ܦሾ்ܺ௢௧ܧ ൌ ஽భߤ௑భߤ ൅ ஽యߤ௑భߤ ൅ ஽రߤ௑భߤ ൅ ஽భߤ௑మߤ ൅ ஽యߤ௑మߤ ൅ ஽రߤ௑మߤ ൅ ஽భߤ௑రߤ ൅

஽యߤ௑రߤ ൅   ஽రߤ௑రߤ

and  

௢௧ሿ்ܦሾܧሾ்ܺ௢௧ሿܧ ൌ ሾܧ ଵܺܦଵሿ ൅ ሾܧ ଵܺܦଷሿ ൅ ሾܧ ଵܺܦସሿ ൅ ଵሿܦሾܺଶܧ ൅ ଷሿܦሾܺଶܧ ൅ ସሿܦሾܺଶܧ ൅
ଵሿܦሾܺସܧ ൅ ଷሿܦሾܺସܧ ൅   ସሿܦሾܺସܧ

For each pair ௜ܺ and ܦ௝, the term ൣܧ ௜ܺܦ௝൧ ൌ ஽ೕߤ௑೔ߤ ൅  ஽ೕߪ௑೔ߪ௑೔,஽ೕߩ

By inspection we see the only remaining terms in ܧሾ்ܺ௢௧்ܦ௢௧ሿ െ  ௢௧ሿ will be்ܦሾܧሾ்ܺ௢௧ሿܧ
the sum of all pairs of  ߩ௑೔,஽ೕߪ௑೔ߪ஽ೕ.  Let us assume for simplicity that ߩ௑೔,஽ೕ ൌ 1 for ݅ ൌ ݆ 

and ߩ௑೔,஽ೕ ൌ 0 for ݅ ് ݆.  This reduces the numerator of the correlation expression in Step 

1 to  

௢௧ሿ்ܦሾ்ܺ௢௧ܧ െ ௢௧ሿ்ܦሾܧሾ்ܺ௢௧ሿܧ ൌ ஽భߪ௑భߪ௑భ,஽భߩ ൅  ஽రߪ௑రߪ௑ర,஽రߩ

 Dividing by the product ߪ௑೅೚೟ߪ஽೅೚೟ we have 

௑೅೚೟,஽೅೚೟ߩ ൌ
஽భߪ௑భߪ௑భ,஽భߩ ൅ ஽రߪ௑రߪ௑ర,஽రߩ

஽೅೚೟ߪ௑೅೚೟ߪ
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Since ௜ܺ ൌ  ௜, we can reduce this correlation to a combination of rates and task durationsݎ௜ܦ

௑೅೚೟,஽೅೚೟ߩ ൌ
஽భߪଵݎ௑భ,஽భߩ

ଶ ൅ ஽రߪସݎ௑ర,஽రߩ
ଶ

஽೅೚೟ߪ௑೅೚೟ߪ
 

We see from this example that if schedule durations in the critical path are uncorrelated, 
they drop from the numerator of the expression of total cost and schedule correlation and it 
becomes a sum of covariance terms. 

8.5 Type	III‐1	Functional	Correlation	
Type III functional correlation exists between pairs of random variables such as two CERs 

ଵܻ	and	 ଶܻ	that share a partially-dependent random variable such as their multiplicative 
errors.  In this case we wish to find  

	, where	௒భ,௒మߩ ଵܻ ൌ ሺܽଵ ൅ ܾଵ ଵܺ
௖భሻߝଵ,  ଶܻ ൌ ሺܽଶ ൅ ܾଶܺଶ

௖మሻߝଶ	, and	ߩఌభ,ఌమ ് 0 

The formula used to determine the correlation coefficient from Step 1is  

	௑,௒ߩ ൌ
Eሾ ଵܻ ଶܻሿ െ Eሾ ଵܻሿEሾ ଶܻሿ

ඥܸܽݎሺ ଵܻሻඥܸܽݎሺ ଶܻሻ

ൌ
Eሾሺܽଵ ൅ ܾଵ ଵܺ

௖భሻߝଵሺܽଶ ൅ ܾଶܺଶ
௖మሻߝଶሿ െ Eሾሺܽଵ ൅ ܾଵ ଵܺ

௖భሻߝଵሿEሾሺܽଶ ൅ ܾଶܺଶ
௖మሻߝଶሿ

ඥܸܽݎሺሺܽଵ ൅ ܾଵ ଵܺ
௖భሻߝଵሻඥܸܽݎሺሺܽଶ ൅ ܾଶܺଶ

௖మሻߝଶሻ

ൌ
Eሾሺܽଵ ൅ ܾଵ ଵܺ

௖భሻߝଵሺܽଶ ൅ ܾଶܺଶ
௖మሻߝଶሿ െ Eሾሺܽଵ ൅ ܾଵ ଵܺ

௖భሻߝଵሿEሾሺܽଶ ൅ ܾଶܺଶ
௖మሻߝଶሿ

ܾଵܾଶඥܸܽݎሺሺ ଵܺ
௖భሻߝଵሻඥܸܽݎሺሺܺଶ

௖మሻߝଶሻ
 

Using Step 2a, from Equation 8-5, 	Eሾ ௜ܻሿ ൌ ܽ୧ ൅ ܾ୧ܧሾܺ௖౟ሿ  

Step 2b, from Equation 8-6 shows, ߪ௒೔ ൌ ܾ୧ඥܸܽݎሺ ௜ܺ
௖౟ߝ௜ሻ.  Since ௜ܺ

௖౟ 	and ߝ௜ are 

uncorrelated, we use the propagation of errors method, which results in: 

௒೔ߪ ൌ ܾ୧ඥሾܧଶሺ ௜ܺ
௖౟ሻܸܽݎሺߝ௜ሻሿ ൅ ሾܸܽݎሺ ௜ܺ

௖౟ሻሿ ൅ ሾܸܽݎሺ ௜ܺ
௖౟ሻܸܽݎሺߝ௜ሻሿ 

Expanding the product of the variables ( ଵܻ ଶܻ) in Step 2c results in: 

ଵܻ ଶܻ ൌ ܽଵܽଶߝଵߝଶ ൅ ܽଵܾଶߝଵߝଶܺଶ
௖మ ൅ ܽଶܾଵߝଵߝଶ ଵܺ

௖భ ൅ ଶܾଵܾଶߝଵߝ ଵܺ
௖భܺଶ

௖మ  

Taking the expectation of the product in Step 2d, 

Eሾ ଵܻ ଶܻሿ ൌ ܽଵܽଶܧሾߝଵߝଶሿ ൅ ܽଵܾଶܧሾߝଵߝଶܺଶ
௖మሿ ൅ ܽଶܾଵܧሾߝଵߝଶ ଵܺ

௖భሿ ൅ ܾଵܾଶܧሾߝଵߝଶ ଵܺ
௖భܺଶ

௖మሿ  

Eሾ ଵܻ ଶܻሿ ൌ
ܽଵܽଶܧሾߝଵߝଶሿ ൅ ܽଵܾଶܧሾߝଵߝଶሿܧሾܺଶ

௖మሿ ൅ ܽଶܾଵܧሾߝଵߝଶሿܧሾ ଵܺ
௖భሿ ൅ ܾଵܾଶܧሾߝଵߝଶሿܧሾ ଵܺ

௖భሿܧሾܺଶ
௖మሿ  

Since ܧሾߝଵߝଶሿ ൌ ఌభߤఌభߤ ൅ ଶሿߝଵߝሾܧ  ఌమ, we can reduce this toߪఌభߪఌభ,ఌమߩ ൌ 1 ൅  .ఌమߪఌభߪఌభ,ఌమߩ
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This results in the expectation term 

Eሾ ଵܻ ଶܻሿ ൌ ܽଵܽଶ൫1 ൅ ఌమ൯ߪఌభߪఌభ,ఌమߩ ൅ ܽଵܾଶ൫1 ൅ ሾܺଶܧఌమ൯ߪఌభߪఌభ,ఌమߩ
௖మሿ ൅ ܽଶܾଵ൫1 ൅

ሾܧఌమ൯ߪఌభߪఌభ,ఌమߩ ଵܺ
௖భሿ ൅ ܾଵܾଶ൫1 ൅ ሾܧఌమ൯ߪఌభߪఌభ,ఌమߩ ଵܺ

௖భሿܧሾܺଶ
௖మሿ  

Eሾ ଵܻሿEሾ ଶܻሿ ൌ ሺܽଵ ൅ ܾଵܧሾ ଵܺ
௖భሿሻሺܽଶ ൅ ܾଶܧሾܺଶ

௖మሿሻ  

Eሾ ଵܻሿEሾ ଶܻሿ ൌ ܽଵܽଶ ൅ ܽଵܾଶܧሾܺଶ
௖మሿ ൅ ܽଶܾଵܧሾ ଵܺ

௖భሿ ൅ ܾଵܾଶܧሾ ଵܺ
௖భሿܧሾܺଶ

௖మሿ 

Calculating the numerator of the correlation equation: 

Eሾ ଵܻ ଶܻሿ െ Eሾ ଶܻሿEሾ ଶܻሿ

ൌ ܽଵܽଶ൫1 ൅ ఌమ൯ߪఌభߪఌభ,ఌమߩ ൅ ܽଵܾଶ൫1 ൅ ሾܺଶܧఌమ൯ߪఌభߪఌభ,ఌమߩ
௖మሿ

൅ ܽଶܾଵ൫1 ൅ ሾܧఌమ൯ߪఌభߪఌభ,ఌమߩ ଵܺ
௖భሿ ൅ ܾଵܾଶ൫1 ൅ ሾܧఌమ൯ߪఌభߪఌభ,ఌమߩ ଵܺ

௖భሿܧሾܺଶ
௖మሿ

െ ሺܽଵܽଶ ൅ ܽଵܾଶܧሾܺଶ
௖మሿ ൅ ܽଶܾଵܧሾ ଵܺ

௖భሿ ൅ ܾଵܾଶܧሾ ଵܺ
௖భሿܧሾܺଶ

௖మሿሻ 

Cancelling terms: 

Eሾ ଵܻ ଶܻሿ െ Eሾ ଶܻሿEሾ ଶܻሿ

ൌ ܽଵܽଶ൫1 ൅ ఌమ൯ߪఌభߪఌభ,ఌమߩ ൅ ܽଵܾଶ൫1 ൅ ሾܺଶܧఌమ൯ߪఌభߪఌభ,ఌమߩ
௖మሿ

൅ ܽଶܾଵ൫1 ൅ ሾܧఌమ൯ߪఌభߪఌభ,ఌమߩ ଵܺ
௖భሿ ൅ ܾଵܾଶ൫1 ൅ ሾܧఌమ൯ߪఌభߪఌభ,ఌమߩ ଵܺ

௖భሿܧሾܺଶ
௖మሿ

െ ሺܽଵܽଶ ൅ ܽଵܾଶܧሾܺଶ
௖మሿ ൅ ܽଶܾଵܧሾ ଵܺ

௖భሿ ൅ ܾଵܾଶܧሾ ଵܺ
௖భሿܧሾܺଶ

௖మሿሻ 

Eሾ ଵܻ ଶܻሿ െ Eሾ ଶܻሿEሾ ଶܻሿ

ൌ ܽଵܽଶ൫ߩఌభ,ఌమߪఌభߪఌమ൯ ൅ ܽଵܾଶ൫ߩఌభ,ఌమߪఌభߪఌమ൯ܧሾܺଶ
௖మሿ

൅ ܽଶܾଵ൫ߩఌభ,ఌమߪఌభߪఌమ൯ܧሾ ଵܺ
௖భሿ ൅ ܾଵܾଶ൫ߩఌభ,ఌమߪఌభߪఌమ൯ܧሾ ଵܺ

௖భሿܧሾܺଶ
௖మሿ 

Eሾ ଵܻ ଶܻሿ െ Eሾ ଶܻሿEሾ ଶܻሿ

ൌ ൫ߩఌభ,ఌమߪఌభߪఌమ൯ሺܽଵܽଶ ൅ ܽଵܾଶܧሾܺଶ
௖మሿ ൅ ܽଶܾଵܧሾ ଵܺ

௖భሿ

൅ ܾଵܾଶܧሾ ଵܺ
௖భሿܧሾܺଶ

௖మሿሻ 

Finally, using Step 3 we arrive at: 

	௑,௒ߩ ൌ
൫ߩఌభ,ఌమ൯ሺܽଵܽଶ ൅ ܽଵܾଶܧሾܺଶ

௖మሿ ൅ ܽଶܾଵܧሾ ଵܺ
௖భሿ ൅ ܾଵܾଶܧሾ ଵܺ

௖భሿܧሾܺଶ
௖మሿሻ

∏ܾ୧ඥሾܧଶሺ ௜ܺ
௖౟ሻܸܽݎሺߝ௜ሻሿ ൅ ሾܸܽݎሺ ௜ܺ

௖౟ሻሿ ൅ ሾܸܽݎሺ ௜ܺ
௖౟ሻܸܽݎሺߝ௜ሻሿ

 

Case 1:  if	ܿ୧ ൌ 1, then ୧ܻ 	 ൌ ሺܽ୧ ൅ ܾ୧ݔሻߝ୧ 

	௑,௒ߩ ൌ
൫ߩఌభ,ఌమ൯൫ܽଵܽଶ ൅ ܽଵܾଶߤ௑మ ൅ ܽଶܾଵߤ௑భ ൅ ܾଵܾଶߤ௑భߤ௑మ൯

∏ܾ୧ඥሾܧଶሺ ௜ܺሻܸܽݎሺߝ௜ሻሿ ൅ ሾܸܽݎሺ ௜ܺሻሿ ൅ ሾܸܽݎሺ ௜ܺሻܸܽݎሺߝ௜ሻሿ
 

Case 2:  if	ܽ୧ ൌ 0, and ܿ୧ ൌ 1 then ୧ܻ 	 ൌ ܾ୧ߝݔ୧ 
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	௑,௒ߩ ൌ
൫ߩఌభ,ఌమ൯൫ܾଵܾଶߤ௑భߤ௑మ൯

∏ܾ୧ඥሾܧଶሺ ௜ܺሻܸܽݎሺߝ௜ሻሿ ൅ ሾܸܽݎሺ ௜ܺሻሿ ൅ ሾܸܽݎሺ ௜ܺሻܸܽݎሺߝ௜ሻሿ
 

8.6 Type	III‐2	Functional	Correlation	
Type III-2 functional correlation exists between pairs of RVs that are related to each other 
through different functions of their dependent variables.  One example of Type III-2 
correlation is the correlation between two summary-level (parent) WBS elements that have 
correlated lower-level WBS elements (i.e., their children).  The WBS shown in Table 8-6 
has costs that are correlated with ࣋ (a correlation matrix). 

Table 8-6 Example WBS 

WBS  ߤ ߪ
1.  37.000 10.325

1.1  10.000 4.000

1.2  12.000 5.000

1.3  15.000 6.000

2.  36.000 10.555

2.1  18.000 7.000

2.2  6.000 3.000

2.3  12.000 5.000

 

The matrix,	࣋, representing the correlation between each of the lower-level WBS elements 
is shown below. 

࣋ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
1 0.2 0.2 0.2 0.2 0.2
0.2 1 0.2 0.2 0.2 0.2
0.2 0.2 1 0.2 0.2 0.2
0.2 0.2 0.2 1 0.2 0.2
0.2 0.2 0.2 0.2 1 0.2
0.2 0.2 0.2 0.2 0.2 1 ے

ۑ
ۑ
ۑ
ۑ
ې

 

Using the values of ߪ௜ of the lower-level WBS elements shown in Table 8-6, we are able to 
compute the standard deviations of summary-level WBS elements ߪଵ , ߪଶ, and ்ߪ௢௧.  The 
correlation matrix above can be partitioned into four sub-matrices, or partitions.  The 
matrix shown in Figure 8-1 shows the partitions used to calculate ߪଵ (upper left) and ߪଶ 
(lower right).   The remaining two partitions represent the correlation between WBS 
elements that are children of different parent WBS elements. 
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Figure 8-1 Partitioned Correlation Matrix 

The correlation coefficient between WBS elements 1 and 2 can be represented by	ߩଵ,ଶ.  

This value is related to the lower left and upper right correlation coefficients in the 
partitioned correlation matrix. 

Remembering that ்ߪ௢௧ଶ ൌ ∑ ௜ଶߪ
௡
௜ୀଵ ൅ 2∑ ∑ ௞ߪ௝ߪ௝,௞ߩ

௡ିଵ
௝ୀଵ

௡
௞ୀ௝ାଵ , we can express ்ߪ௢௧ in two 

ways.  The first uses the variances and covariance of the summary elements,  

௢௧ଶ்ߪ ൌ ଵଶߪ ൅ ଶଶߪ ൅  ଶ, and the second uses the variances and covariances of theߪଵߪଵ,ଶߩ2

lower-level WBS elements, 

௢௧ଶ்ߪ ൌ ଵ.ଵଶߪ ൅ ⋯൅ ଶ.ଷଶߪ ൅ 2൫ߩଵ.ଵ,ଵ.ଶߪଵ.ଵߪଵ.ଶ ൅ ⋯൅  .ଶ.ଷ൯ߪଶ.ଶߪଶ.ଶ,ଶ.ଷߩ

Since both equal ்ߪ௢௧, we can say 

ଵଶߪ ൅ ଶଶߪ ൅ ଶߪଵߪଵ,ଶߩ2 ൌ ଵ.ଵଶߪ ൅ ⋯൅ ଶ.ଷଶߪ ൅ 2൫ߩଵ.ଵ,ଵ.ଶߪଵ.ଵߪଵ.ଶ ൅ ⋯൅   ଶ.ଷ൯ߪଶ.ଶߪଶ.ଶ,ଶ.ଷߩ

By solving for ߩଵ,ଶߪଵߪଶ, we get the correlation between WBS elements 1 and 2: 

ଵ,ଶߩ ൌ
൫ఘభ.భ,భ.మఙభ.భఙభ.మା⋯ାఘమ.మ,మ.యఙమ.మఙమ.య൯ା

భ
మ
ൣ൫ఙభ.భమା⋯ାఙమ.యమ൯ି൫ఙభమାఙమమ൯൧

ఙభఙమ
 . 

8.6.1 Type	III‐2	Functional	Correlation	Example	
For our example, we will continue the calculation with values from Table 8-6. 

If we calculate ்ߪ௢௧ using lower-level WBS elements we have ்ߪ௢௧ଶ ൌ 160 (or ்ߪ௢௧ ൌ
17.550ሻ. 

Finding the terms for the formula used to calculate the correlation coefficient between 
WBS elements 1 and 2, we have: 

ሺߪଵ.ଵଶ ൅ ⋯൅ ଶ.ଷଶሻߪ ൌ 160, and ሺߪଵଶ ൅ ଶଶሻߪ ൌ 218,	so 

 
൫ఙభ.భమା⋯ାఙమ.యమ൯ି൫ఙభమାఙమమ൯

ଶ
ൌ

ሺଵ଺଴ିଶଵ଼ሻ

ଶ
ൌ െ29, 

൫ߩଵ.ଵ,ଵ.ଶߪଵ.ଵߪଵ.ଶ ൅ ⋯൅ ଶ.ଷ൯ߪଶ.ଶߪଶ.ଶ,ଶ.ଷߩ ൌ 74, and  

 i,j 1.1 1.2 1.3 2.1 2.2 2.3

1.1 1 0.2 0.2 0.2 0.2 0.2

1.2 0.2 1 0.2 0.2 0.2 0.2

1.3 0.2 0.2 1 0.2 0.2 0.2

2.1 0.2 0.2 0.2 1 0.2 0.2

2.2 0.2 0.2 0.2 0.2 1 0.2

2.3 0.2 0.2 0.2 0.2 0.2 1
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ଵ,ଶߩ ൌ
ሺ଻ସሻାሺିଶଽሻ

ሺଵ଴.ଷଶହሻሺଵ଴.ହହହሻ
ൌ ସହ

ଵ଴଼.ଽ଻ସ
ൌ 0.4129  

Using this value, along with ߪଵ and ߪଶ we have ்ߪ௢௧ଶ ൌ ଵଶߪ ൅ ଶଶߪ ൅  .ଶߪଵߪଵ,ଶߩ2

௢௧ଶ்ߪ ൌ ሺ10.325ሻଶ ൅ ሺ10.555ሻଶ ൅ 2ሺ0.4129ሻሺ10.325ሻሺ10.555ሻ ൌ 160, or ்ߪ௢௧ ൌ 17.550.  

8.7 Section	Summary	
Knowing how to compute functional correlations allows us to use MOM summation in a WBS 
structure and to solve many of the problems germane to probabilistic schedule network analysis.  
The functional correlation between elements of cost and schedule models allows the analyst to 
determine their influence on the total variance of an estimate and to construct joint probability 
density functions of pairs of modeled variables such as cost and schedule.    
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9 Discrete Risks 
Analysts may need to include the probabilistic impacts of unique, independent, and 
discrete risk events in an estimate developed with a particular method (e.g., parametrically, 
with a CER) that does not account for their impacts in their underlying assumptions.  We 
will define a set of individual risks,	ܴ௜, as independent events with respect to (WRT) each 
other.  We will also assume each ܴ௜ has a probability of occurrence of ௜ܲ 	and an associated 
impact of	ܦ௜.

52  These unique, independent risks are denoted as	ܴ௜ሺ ௜ܲ,  .௜ሻܦ

The PMF for each ܴ௜	is: 

 
ோ݂೔ሺݔሻ ൌ ൜ ௜ܲ ; ݔ ൌ ௜ܦ

1 െ ௜ܲ ;   ݁ݏ݅ݓݎ݄݁ݐ݋

 

9-1

The PMF ோ݂೔ሺݔሻ has two possible values: one in which the risk occurs with probability,	 ௜ܲ, 

and one where no risk occurs with probability	1 െ ௜ܲ.  This discrete risk has two possible 
states, or a set of potential outcomes.  The problem becomes more interesting (and 
practical) when we are dealing with more than one risk.  If we have ݊ possible risks, 
where	݊	 ൒ 	1, we will have ݇ risk states (possible outcomes) as defined by the binomial 
coefficient 53,	 ௜ܵ :	0 ൑ ݅ ൑ ݇, where:  

 ݇ ൌ ∑ ቀ
݊
݅ ቁ

௡
௜ୀ଴ ൌ 2௡  

 

9-2

When we add a single discrete risk (ܴଵ) to the estimate (ܥ), a new type of distribution 
called a mixed distribution54 is formed from the continuous distribution of ܥ and the 
discrete distribution of	ܴଵ (Evans & Rosenthal, 2010).55  The mixed distribution will have 
mean ߤெ and standard deviation	ߪெ.  The statistics of the mixed distribution are not well 
publicized in the cost analysis literature, so we will first introduce the formulae for ߤெ and 
 ெfor the simple single-risk case, then the more difficult multiple-risk case, and finally theߪ
general formulae that treat the impacts of a discrete risk as random variables. 

9.1.1 Single	Discrete	Risk	Case	
In this case, we have one discrete risk (ܴଵ) and therefore two possible states defined by	݇, 
where	݇ ൌ 2ଵ ൌ 	2.  These states are: (1)	ܵ଴ ൌ 	ܴଵതതത, where ܴଵdoes not occur, and (2)	 ଵܵ ൌ
	ܴଵ, where ܴଵdoes occur.  This situation is depicted in the Venn diagram in Figure 9-1. 

                                                 

52 The impact, D୧, may be either a discrete or a random variable (with parameters μୈ౟ and	σୈ౟).  When D୧ is a 
random variable, the discrete risk R୧ is actually a mixed distribution. 
53 By an “outcome,” we mean a combination of the ݊ possible risks composed of those that actually occur. 
54 The mixed distribution is also called a “mixture distribution”. 
55 Evans, M. J., & Rosenthal, J. S. (2010). Probability and Statistics: The Science of Uncertainty, 2nd Ed. 
New York, NY: W. H. Freeman and Co. 
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Figure 9-1 Venn Diagram Representation of Single-Risk State 

If we use the same continuous distribution (ܥ), and apply the discrete risk (ܴଵ) with 
probability of occurrence	 ଵܲ and cost impact	ܦଵ, then this results in a multimodal, mixed 
probability distribution.  This multimodal probability distribution will have ݇ ൌ 2 
localized peaks or modes, defined by the number of possible states with the height of each 
mode defined by the probability of occurrence of the two states, ܵ଴ and	 ଵܵ (Figure 9-2).   

 

Figure 9-2 Probability Distribution of a Single Discrete Risk 

When	 ଵܲ ൌ 0.5, the probability of	ܵ଴,	ܲሺܵ଴ሻ, is equal to the probability of 	 ଵܵ,	ܲሺ ଵܵሻ.  
Since ܵ଴	and 	 ଵܵ	have equal probabilities of occurrence, we expect the heights of the modes 
of the bimodal distribution to be equal, as shown in Figure 9-3, and the mean of the mixed 
distribution to be halfway between the two modes of the distribution. 
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Figure 9-3  Normal Probability Distribution, ࡯૙ ൅ .૚ሺ૙ࡾ ૚, withࡾ ૞,  ૚ሻࡰ

When	 ଵܲ ൏ 0.5	, the probability of	ܵ଴,	ܲሺܵ଴ሻ, is greater than the probability of 	 ଵܵ,	ܲሺ ଵܵሻ.  
Since	ܵ଴	has a greater probability of occurrence than	 ଵܵ, we expect the height of the mode 
formed by 	ܵ଴	to be greater than the mode formed by 	 ଵܵ	as shown in Figure 9-4.  
Additionally, the mean of the mixed distribution will be smaller than in the case of Figure 
9-3. 

 

Figure 9-4  Normal Probability Distribution, C0+D1, with Low P1 

It is convenient to provide the information about the possible states, their probabilistic 
meaning, impact, and probabilities of occurrence in a state table such as the one shown in 
Table 9-1. 

Table 9-1 Single Discrete Risk State Table 

State, ࢏ࡿ Definition Risk Impact, ࢏ࡿࡰ Probability, P(Si) 

S଴ ൌ Rଵതതത No risks occur 0 ሾ1 െ ܲሺܴଵሻሿ 
ܵ଴ ൌ ܴଵ ܴଵoccurs ܦଵ ܲሺܴଵሻ 

9.1.2 Mean	of	Mixed	Distribution	
The	ߤெ	and	ߪெ	of the mixed distributions will be weighted by the probabilities of 
occurrence of the two states, 	ܲሺܵ଴ሻ and	ܲሺ ଵܵሻ.  ߤெ	is calculated using Equation 9-3. 

ெߤ  ൌ ∑ ܲሺ ௜ܵሻߤௌ೔
௞
௜ୀ଴ ൌ ∑ ܲሺ ௜ܵሻ൫ߤ஼ ൅ ௌ೔൯ܦ

௞
௜ୀ଴   9-3
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Equation 9-3 reduces to Equation 9-4 for any number of risks (݊; 1 ൑ ݊).  This derivation 
is found in Appendix C – Derivations. 

ெߤ  ൌ ஼ߤ ൅ ∑ ൫ ௝ܲܦ௝൯
௡
௝ୀଵ   

 

9-4

Using Equation 9-3 for the single risk case, where there are two states, we can 
equate	ܲሺܵ଴ሻ ൌ 	1 െ ܲሺ ଵܵሻ. Using Equation 9-3,	ܲሺܵ଴ሻ ൌ ଵܲ, and ܲሺ ଵܵሻ ൌ 1 െ ଵܲ, so the 
mean of the mixed distribution formed by a single risk is ߤெ ൌ ܲሺܵ଴ሻߤௌబ ൅ ܲሺ ଵܵሻߤௌభ ൌ
ሺ1 െ ଵܲሻሺߤ஼ሻ ൅ ଵܲ	ሺߤ஼ ൅ ଵሻܦ ൌ ஼ߤ ൅ ଵܲܦଵ.  This is the same result obtained using 
Equation 9-4. 

By rearranging terms, the mean of the continuous distribution (ܥ) is shifted in the mixed 
distribution formed by the single risk case by	ߤெ െ ஼ߤ ൌ ଵܲܦଵ.  Likewise Equation 9-4 can 
be easily manipulated to provide the mean shift (ߤߜ) in Equation 9-5. 

ߤߜ  ൌ ெߤ െ ஼ߤ ൌ ∑ ൫ ௝ܲܦ௝൯
௡
௝ୀଵ   

 

9-5

9.1.3 Standard	Deviation	of	Mixed	Distribution	
The standard deviation of the mixed distribution formed by ݊ discrete risks and ݇ states is 
the square root of the variance of the continuous distribution and the probability-weighted 
variances of the discrete risk states about	ߤெ	:

 56 

 
ெߪ ൌ ටሺߪ஼ሻଶ ൅ ∑ ܲሺ ௜ܵሻൣܦௌ೔ െ ሺߤெ െ ஼ሻ൧ߤ

ଶ௞ିଵ
௜ୀ଴ , so  

ெߪ ൌ ටሺߪ஼ሻଶ ൅ ∑ ܲሺ ௜ܵሻൣܦௌ೔ െ ൧ߤߜ
ଶ௞ିଵ

௜ୀ଴ , where  

 ௌ೔= the impact of a particular state ௜ܵܦ
 

9-6

Expanding the summations in Equation 9-6 and using the relationship derived in Equation 
9-5, we can derive a relationship for the standard deviation of the mixed distribution 
formed by ܥ and a single discrete risk,	ܴଵ. 

ߤߜ ൌ ∑ ൫ ௝ܲܦ௝൯
௡
௝ୀଵ ൌ ଵܲܦଵ  

ெߪ ൌ ටሺߪ஼ሻଶ ൅ ܲሺܵ଴ሻൣܦௌబ െ ൧ߤߜ
ଶ
൅ ܲሺ ଵܵሻൣܦௌభ െ ൧ߤߜ

ଶ
		

Using the expressions for	ܲሺܵ଴ሻ, ܲሺ ଵܵሻ, ܦௌబ, and ܦௌభ from Table 9-1, we obtain 

                                                 

56 This comes from the analogy of the variance of a distribution to the moment of inertia of an object with 
respect to an axis through the center of mass (the parallel axis theorem) from Ref 4: Helstrom, C.W., 
Probability and Stochastic Processes for Engineers, 2nd Ed, Macmillan, New York, 1991. p.113 
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ெߪ ൌ ඥሺߪ஼ሻଶ ൅ ሺ1 െ ଵܲሻሾ0 െ ሿଶߤߜ ൅ ሺ ଵܲሻሾܦଵ െ   ሿଶߤߜ

ெߪ ൌ ඥሺߪ஼ሻଶ ൅ ሺ1 െ ଵܲሻሾെ ଵܲܦଵሿଶ ൅ ሺ ଵܲሻሾܦଵ െ ଵܲܦଵሿଶ  

ெߪ ൌ ටሺߪ஼ሻଶ ൅ ሺ1 െ ଵܲሻൣ ଵܲ
ଶܦଵ

ଶ൧ ൅ ሺ ଵܲሻൣܦଵ
ଶ െ 2 ଵܲܦଵ

ଶ ൅ ଵܲ
ଶܦଵ

ଶ൧  

ெߪ ൌ ටሺߪ஼ሻଶ ൅ ൣ ଵܲ
ଶܦଵ

ଶ൧ െ ଵܲൣ ଵܲ
ଶܦଵ

ଶ൧ ൅ ൣ ଵܲܦଵ
ଶ൧ െ 2ൣ ଵܲ

ଶܦଵ
ଶ൧ ൅ ଵܲൣ ଵܲ

ଶܦଵ
ଶ൧  

ெߪ ൌ ටሺߪ஼ሻଶ ൅ ൣ ଵܲܦଵ
ଶ൧ െ ൣ ଵܲ

ଶܦଵ
ଶ൧  

This simplifies to Equation 9-7. 

 
ெߪ ൌ ටሺߪ஼ሻଶ ൅ ሺ1 െ ଵܲሻ൫ ଵܲܦଵ

ଶ൯  

 

9-7

9.1.4 Multiple	Risks	Case	
In the case where we have multiple risks,	ܴ௜, we have ݇ possible states as defined by 
Equation 9-2.  In the case where we have ݊ ൌ 3 risks, there will be ݇ ൌ 2ଷ ൌ 8 possible 
events as depicted in the Venn diagram (Rubenstein, 1986) in Figure 9-5.57 

 

Figure 9-5  Venn Diagram Representation of Three-Risk State 

Using the state table approach for the ݊ ൌ 3 risk case, we can list the ݇ ൌ 8 possible states, 
their probabilistic meanings, impacts, and probabilities of occurrence as shown in Table 
9-2. 

                                                 

57 Rubenstein, M. F. (1986). Tools for Thinking and Problem Solving. Englewood Cliffs, NJ: Prentice-Hall. 
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Table 9-2 Multiple Discrete Risk State Table 

State, ࢏ࡿ  Definition  Risk Impacts, ܑ܁ࡰ  Probability, P(Si) 

ܵ଴ ൌ ܴଵതതത ∩ ܴଶതതത ∩ ܴଷതതത No risks occur  0 ሾ1 െ ଵܲሿሾ1 െ ଶܲሿሾ1 െ ଷܲሿ 

ଵܵ ൌ ܴଵ ∩ ܴଶതതത ∩ ܴଷതതത Only ܴଵ occurs  ଵ ଵܲሾ1ܦ െ ଶܲሿሾ1 െ ଷܲሿ 
	ܵଶ ൌ ܴଵതതത ∩ ܴଶ ∩ ܴଷതതത Only ܴଶ occurs  ଶ ሾ1ܦ െ ଵܲሿ ଶܲሾ1 െ ଷܲሿ 
ܵଷ ൌ ܴଵ ∩ ܴଶ ∩ ܴଷതതത ܴଵ	and ܴଶoccur  ଵܦ ൅ ଶ ଵܲܦ ଶܲሾ1 െ ଷܲሿ 
ܵସ ൌ 	ܴଵതതത ∩ ܴଶതതത ∩ ܴଷ Only ܴଷ occurs ଷ ሾ1ܦ െ ଵܲሿሾ1 െ ଶܲሿ ଷܲ 
ܵହ ൌ 	ܴଵ ∩ ܴଶതതത ∩ ܴଷ ܴଵ	and ܴଷ occur ଵܦ ൅ ଷ ଵܲሾ1ܦ െ ଶܲሿ ଷܲ 
ܵ଺ ൌ 	ܴଵതതത ∩ ܴଶ ∩ ܴଷ ܴଶ	and ܴଷ occur ଶܦ ൅ ଷ ሾ1ܦ െ ଵܲሿ ଶܲ ଷܲ 
ܵ଻ ൌ 	ܴଵ ∩ ܴଶ ∩ ܴଷ All risks occur ଵܦ ൅ ଶܦ ൅ ଷ ଵܲܦ ଶܲ ଷܲ 

 

When the three discrete risks are combined probabilistically with the estimate (ܥ), the 
result is a multimodal distribution with modes defined by the	݇ െ 1 ൌ 7	scaled copies of 
the continuous distribution (ܥ).  The scaling of each of these copies is weighted by that 
particular state’s P(Si).   

9.1.5 Multiple	Discrete	Risks	Example	
In the case where	݊ ൌ 3, one possible distribution formed by the ݇ ൌ 8 states where 
risks	ܴଵ,	ܴଶ	, or ܴଷ	are present is shown in Figure 9-6.  The continuous distribution ܥ is 
defined by a normal distribution,	ܰሺ1,0.2ሻ, and the three discrete risks are defined by 
ܴ௜ሺ ௜ܲ, ,௜ሻ: ܴଵሺ0.4,1ሻ, ܴଶሺ0.3ܦ 2ሻ, and ܴଷሺ0.2, 3ሻ. 

 

Figure 9-6 PDFs of Continuous (C) and Mixed Distributions 

The mean of the mixed distribution is calculated from Equation 9-4 as 

ெߤ  ൌ ஼ߤ ൅ ∑ ൫ ௝ܲܦ௝൯
௡
௝ୀଵ ൌ 1 ൅ ሾሺ0.4ሻሺ1ሻ ൅ ሺ0.3ሻሺ2ሻ ൅ ሺ0.2ሻሺ3ሻሿ ൌ 1 ൅ ሾ0.4 ൅ 0.6 ൅

0.6ሿ ൌ 2.6. 

M

0

0.5

1

1.5

2

2.5

0.000 2.000 4.000 6.000 8.000 10.000 12.000

p
(x
)

x

PDFs of Continuous (C) and Mixed (M) Distribution

C M



ANALYTIC METHOD FOR RISK ANALYSIS 

 
104 

© 2012 Covarus, LLC.  All rights reserved. 

The mean shift,	ߤߜ	, which is required to calculate ߪெ is calculated using Equation 9-5 as  

ߤߜ ൌ ெߤ െ ஼ߤ ൌ 2.6 െ 1.0 ൌ 1.6.   

The calculation of the standard deviation using Equation 9-6 requires calculation of the 
probability-weighted distribution of the means of the distributions formed by the ݇ states, 

ܲሺ ௜ܵሻൣܦௌ೔ െ ൧ߤߜ
ଶ
.  These calculations are shown in Table 9-3. 

Table 9-3 Three Discrete Risk Example Calculations 

࢏ࡿࡰ൫ ܑ܁ࡰ ࢏ࡿ െ ൯ࣆࢾ
૛
࢏ࡿࡰሻ൫࢏ࡿሺࡼ ሻ࢏ࡿሺࡼ  െ ൯ࣆࢾ

૛
 

ܵ଴ 0 ሺെ1.6ሻଶ ൌ 2.56 ሾ0.6ሿሾ0.7ሿሾ0.8ሿ ൌ 0.336 ሺ2.56ሻሺ0.336ሻ ൌ 0.8602	

Sଵ	 1	 ሺെ0.6ሻଶ ൌ 0.36 ሾ0.4ሿሾ0.7ሿሾ0.8ሿ ൌ 0.224 ሺ0.36ሻሺ0.224ሻ ൌ 0.0806	
Sଶ	 2	 ሺ0.4ሻଶ ൌ 0.16	 ሾ0.6ሿሾ0.3ሿሾ0.8ሿ ൌ 0.144 ሺ0.16ሻሺ0.144ሻ ൌ 0.0230	
Sଷ	 3	 ሺ1.4ሻଶ ൌ 1.96	 ሾ0.4ሿሾ0.3ሿሾ0.8ሿ ൌ 0.096 ሺ1.96ሻሺ0.096ሻ ൌ 0.1882	
Sସ	 3	 ሺ1.4ሻଶ ൌ 1.96	 ሾ0.6ሿሾ0.7ሿሾ0.2ሿ ൌ 0.084 ሺ1.96ሻሺ0.084ሻ ൌ 0.1646	
Sହ	 4	 ሺ2.4ሻଶ ൌ 5.76	 ሾ0.4ሿሾ0.7ሿሾ0.2ሿ ൌ 0.056 ሺ5.76ሻሺ0.056ሻ ൌ 0.3226	
S଺	 5	 ሺ3.4ሻଶ ൌ 11.56 ሾ0.6ሿሾ0.3ሿሾ0.2ሿ ൌ 0.036 ሺ11.56ሻሺ0.036ሻ ൌ 0.4162	
S଻	 6	 ሺ4.4ሻଶ ൌ 19.36 ሾ0.4ሿሾ0.3ሿሾ0.2ሿ ൌ 0.024 ሺ19.36ሻሺ0.024ሻ ൌ 0.4646	

෍ࡼሺ࢏ࡿሻ൫࢏ࡿࡰ െ ൯ࣆࢾ
૛
ൌ ૛. ૞૛ 

 

Finally, we can calculate ߪெusing Equation 9-6 as 

ெߪ ൌ ටሺߪ஼ሻଶ ൅ ∑ ܲሺ ௜ܵሻൣܦௌ೔ െ ൧ߤߜ
ଶ௞ିଵ

௜ୀ଴ ൌ ඥሺ0.2ሻଶ ൅ 2.52 ൌ √2.56 ൌ 1.6. 

The method of preparing state tables to perform the ߪெ calculations becomes cumbersome 
when the number of discrete risks grows large, so we will develop formulae and introduce 
a software routine to ease the computational burden.  

9.1.6 Binary	State	Representation	
Since the number of expected states for these binomial events given ݊ discrete risks is 
always	2௡, we can determine which risks occur in each state through binary representation 
of the state number ܵ଴ to	ܵሺଶ೙ିଵሻ.  Conveniently, the binary representation of ݇ ൌ 2௡ states 

has ݊ binary digits, or bits, corresponding to the number of risks.  Since ݊ binary digits 
represent 2௡	unique combinations, we can uniquely determine which risks occur in any 
state ܵ଴ to	ܵሺଶ೙ିଵሻ.  This is a fundamental application of the number of states of ݊ binary 

switches, which is the foundation of Boolean addressing in computers (Kal, 2002).58 

                                                 

58 Kal, S. (2002). Basic Electronics: Devices, Circuits and IT Fundamentals. New Delhi, India: Prentice Hall. 
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We will first define the rightmost digit as the first digit which indicates whether ܴଵoccurs 
in this state (1) or does not occur in this state (0).  The digit to the left of the first digit is 
the second digit which indicates whether ܴଶ	occurs or not, and the leftmost digit as the 
third, and so on.  As an example, we will assume we have three risks (݊ ൌ 3) and examine 
the third possible state,	ܵଷ. The state index,	3, is represented by the binary number (011).  
Since each of the binary digits represents whether a risk,	ܴ௜, occurs in ܵଷ	we can 
determine: 1) digit one =1, so ܴଵoccurs in ܵଷ; 2) digit two = 1, so ܴଶ	occurs in ܵଷ	; and 3) 
digit three = 0, so ܴଷdoes not occur in ܵଷ	. 

9.1.6.1 Bit Detection 
The	 calculation	 of	 ܲሺ ௜ܵሻ	in	 Table 9-2	 benefits	 greatly	 from	 this	 method	 of	 bit	
detection.59		We	will	define	the	bit	indicator	function	ߛ௜,௝	to	represent	the	binary	value	

of	 bit	 ݆	 of	 integer	݅.	 	 Using	 the	 example	 for	 ܵଷ	above,	 we	 can	 detect	 the	 bits	
representing	the	risks	ܴଵ,	ܴଶand	ܴଷ	and	determine	which	of	the	risks	݆	occurs	in	ܵଷ	.	
First,	set	݅ ൌ 3	then	ߛଷ,ଵ ൌ ଷ,ଶߛ	,1 ൌ 1,	and	ߛଷ,ଷ ൌ 0.	

We	can	express	ܲሺ ௜ܵሻ	in	terms	of	ߛ௜,௝	as	

 ܲሺ ௜ܵሻ ൌ ∑ ൫1 െ ௜,௝൯൫1ߛ െ ௝ܲ൯ ൅ ௜,௝ߛ ௝ܲ
௡
௝ୀଵ .		

 

9-8

Similarly, we can use ߛ௜,௝ to determine the impact of state	݅, ܦௌ೔as  

ௌ೔ܦ  ൌ ∑ ௝ܦ௜,௝ߛ
௡
௝ୀଵ .  

 
9-9

Equations 9-8 and 9-9 greatly simplify the problem of calculating	ܲሺ ௜ܵሻ,	ܦௌ೔, and ߪெ. 

9.1.7 Adding	Discrete	Risks	with	Impacts	that	are	Random	Variables	
Until now, we have discussed the situation of discrete risks having discrete impact.  Since 
the risk impacts are also estimates (and contain some uncertainty), we can modify 
Equations 9-4 and 9-6 to accommodate risk impacts that are random variables. 

Replacing the discrete value for ܦ௝ in Equation 9-4 with the mean of	ߤ஽ೕ, we re-define 

 to be	ெߤ

ெߤ  ൌ ஼ߤ ൅ ∑ ቀ ௝ܲ ஽ೕቁߤ
௡
௝ୀଵ   

 

9-10

This remains relatively unchanged as does Equation 9-5, which now intuitively becomes 

ߤߜ  ൌ ெߤ െ ஼ߤ ൌ ∑ ቀ ௝ܲߤ஽ೕቁ
௡
௝ୀଵ .  9-11

                                                 

59 The number of risks we can detect will be limited by the largest integer we are able to compute and find 
the binary equivalent.  
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The calculation of ߪெ	becomes more complicated by the fact that the impacts of the 
discrete risks are random variables.  Remembering the equation for the variance of the sum 
of distributions in Equation 4-4, we must treat the variance of the sum of the continuous 
distribution (	ܥ	) and the risk impacts (ܦ௝) at any particular state in the same fashion.  

Using linear algebra (Covert, 2006), we can rewrite Equation 4-4 in matrix form as  

ଶ்ߪ  ൌ  where ,࣌࣋ࢀ࣌
 is a column vector of standard deviations with	࣌
dimension 1xM, and  
 .is the correlation matrix with dimension MxM ࣋

 

9-12

We will use this convenient expression for calculating the impacts of the variances of 
each	ܦ௝ on	ߪ௠	.  To begin, for each state	 ௜ܵ 	, we must compose a (partitioned) vector of 

standard deviations (	࢏࣌	) of dimension 1xM.  Since we will be calculating the variance of 
the statistical sum of	ܥ	and	݊	risks, the number of rows will be	ܯ ൌ ݊ ൅ 1.  The top row 
element is	ߪ஼, and the remaining	݊	rows are the products of ߪ஽ೕߛ௜,௝ representing the binary 

detection multiplied by the standard deviation of the risk impact as shown in Equation 
9-13. 

 

࢏࣌ ൌ ൦

஼ߪ
௜,ଵߛ஽భߪ
⋮

௜,௡ߛ஽೙ߪ

൪  

 

9-13

Next, we must compose the correlation matrix (	࣋	) of dimension MxM 

 

࣋ ൌ

ۏ
ێ
ێ
ۍ
1 ஼,஽భߩ ⋯ ஼,஽೙ߩ

஼,஽భߩ 1 ⋯ ஽భ,஽೙ߩ
⋮ ⋮ ⋱ ⋮

஼,஽೙ߩ ஽భ,஽೙ߩ ⋯ 1 ے
ۑ
ۑ
ې
  

 

9-14

Using the form of Equation 9-12, we calculate the probability-weighted variance ߪ஽ೄ೔
ଶ	for 

each state as shown in Equation 9-15. 

஽ೄ೔ߪ 
ଶ ൌ ൫ ௌܲ೔࢏࣌൯

ࢀ
  ࢏࣌࣋

 

9-15

Finally, ߪெ is computed by taking the square root of the two components that determine 
the variance of the mixed distribution:  1) the variance of the sum of the probability-
weighted variances (Equation 9-15), and 2) the probability-weighted distribution of the 
means of the distributions formed by the	݇ states Equations 9-6 and 9-11. 
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ெߪ ൌ 	ට∑ ܲሺ ௜ܵሻ ቀߪ஽ೄ೔ቁ

ଶ
൅ ൜ܲሺ ௜ܵሻ ቂܦௌ೔ െ ∑ ቀ ௝ܲߤ஽ೕቁ

௡
௝ୀଵ ቃ

ଶ
ൠଶ೙ିଵ

௜ୀ଴   

ெߪ ൌ ට∑ ܲሺ ௜ܵሻ ൜ቀߪ஽ೄ೔ቁ
ଶ
൅ ௌ೔ܦൣ െ ൧ߤߜ

ଶ
ൠଶ೙ିଵ

௜ୀ଴   

 

9-16

Equation 9-16 reduces to Equation 9-6 when all ߪ஽౟ ൌ 0	and	ߤ஽ೕ ൌ  .௝ܦ

9.1.8 Discrete	Risk	Numerical	Example	
As a demonstration, we will use the multiple discrete risks example shown previously, 
except each ܦ௜ will be defined by a normal distribution ܰሾߤ,  ሿ with the parameters shownߪ
in Table 9-4, and (	ܥ	) defined as a “risk” with 100% probability of occurrence.  We will 
use a constant value of 	ߩ ൌ 0.2	between all random variables. 

Table 9-4 Three Discrete Risk Example Inputs 

࢏ࡼ ࣌ ࣆ 
 1.0 0.2 1.0 ࡯
 ૚ 1.0 0.2 0.4ࡾ
 ૛ 2.0 0.3 0.3ࡾ
 ૜ 3.0 0.6 0.2ࡾ

 

Using the example inputs, we can easily calculate ߤெ using Equation 9-10 as follows: 

ெߤ ൌ 1.0 ൅ ሺ0.4ሻሺ1.0ሻ ൅ ሺ0.3ሻሺ2.0ሻ ൅ ሺ0.2ሻሺ3.0ሻ ൌ 2.6  

Next, we calculate ߤߜ	using Equation 9-11 

ߤߜ ൌ ∑ ቀ ௝ܲߤ஽ೕቁ
௡
௝ୀଵ ൌ ሺ0.4ሻሺ1.0ሻ ൅ ሺ0.3ሻሺ2.0ሻ ൅ ሺ0.2ሻሺ3.0ሻ ൌ 1.6  

Then calculate ߪ஽ೄ೔
ଶ using 9-15 and ߩ ൌ 0.2 and ߪ஽ೄ೔

ଶ ൌ ∑ ൫ ௌܲ೔࢏࣌൯
ࢀ
࢏࣌࣋

ଶ೙ିଵ
௜ୀ଴ ൌ 0.1892.  

Finally, we combine the terms in Equation 9-16 

ெߪ ൌ ට∑ ܲሺ ௜ܵሻ ൜ቀߪ஽ೄ೔ቁ
ଶ
൅ ௌ೔ܦൣ െ ൧ߤߜ

ଶ
ൠଶ೙ିଵ

௜ୀ଴ ൌ 1.6460  

To check this result, a 100,000-trial statistical simulation using Crystal Ball ® using the 
same inputs for the example shown above provided the following results: 

Exact  (Eq. 4‐48 & 4‐54) Simulated
ெߤ ൌ 2.6000 ெߤ̂ ൌ 2.6004
ெߪ ൌ 1.6460 ොெߪ ൌ 1.6495
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The difference between the simulated results and the calculated results is due to the 
statistical simulation’s inability to exactly sample perfectly-distributed correlated random 
variables.  We can extract the 100,000 samples and determine 1) the correlation of the 
samples used in the simulation, and 2) the frequency of	 ௜ܵ.  Using this information, we can 
re-calculate	ߤெ	and	ߪெ	to see the effect of sampling error from the simulation. 

Table 9-5 shows the Pearson correlation of the statistical samples.  Note the correlation 
coefficients between different ܴ௜ (shaded on left) were defined to be 	ߩ ൌ 0.2	 but are 
slightly different in the simulation samples.  Also, the different independent risk 
probabilities ௜ܲ (shaded on right) were specified to be uncorrelated probabilities of 
occurrence, but do not have	ߩ ൌ 0.0. Additionally, there is spurious correlation between 
the PDF of the risks (	ܥ and	ܴ௜	) and the probabilities of occurrence of the risks (in italics). 

Table 9-5 Correlation of Samples from Statistical Simulation 

   ࡯  ૚ࡾ ૛ࡾ ૜ࡾ ૚ࡼ  ૛ࡼ  ૜ࡼ
۱  1.0000  0.2015  0.2048 0.2002 ‐0.0007 0.0008  ‐0.0015 

 ૚܀   1.0000  0.2111 0.2074 0.0005 0.0011  0.0039 

 ૛܀     1.0000 0.2077 ‐0.0038 0.0030  0.0055 

 ૜܀     1.0000 0.0011 0.0024  ‐0.0002 

 ૚۾     1.0000 0.0020  0.0026 

 ૛۾     1.0000  0.0017 

 ૜۾       1.0000 

 

Since the risks can no longer be assumed to be independent, we can extract the state 
probabilities	ܲሺ ௜ܵሻ	, which are provided in Table 9-6. 

Table 9-6 State probabilities ࡼሺ࢏ࡿሻ  from Statistical Simulation 

࢏ࡿ ሻ࢏ࡿሺࡼ
0 0.33706

1 0.22326

2 0.14345

3 0.09623

4 0.0834

5 0.05628

6 0.03609

7 0.02423

 

We can substitute the sampled values from the simulation (	ߩ from Table 9-5 and 
ܲሺ ௜ܵሻ	from Table 9-6) into Equations 9-10 and 9-16. This results in calculations for the 
mean and standard deviation of the mixed distribution much closer to the simulated values. 
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Exact 
(Eq. 4‐48 & 4‐54) 

Simulated Exact Using	࣋	and  
ሻ࢏ࡿሺࡼ from Simulation  

ெߤ ൌ 2.6000  ெߤ̂ ൌ 2.6004 ெߤ ൌ 2.6000 
ெߪ ൌ 1.6460  ොெߪ ൌ 1.6495 ெߪ ൌ 1.6489 

 

The evidence that the statistical simulation cannot exactly sample perfectly-distributed 
correlated random variables shows the equations developed in this report are more reliable 
calculators of discrete risk than are simulated results. 
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10 Maximum and Minimum of Random Variables 
The maximum duration of the paths of a schedule network define its critical path, and in a 
probabilistic schedule, the distributions of the probabilistic critical paths define the 
probabilistic schedule duration.  If the tasks in a schedule network are defined by 
probability distributions (i.e., PDFs or PMFs), we may need to find the moments and the 
distribution of the maximum of two or more probability distributions where these tasks 
merge. If the finish date of a schedule is defined by the latest end date of three tasks, A, B, 
and C, which is defined by	݉ܽݔሺܣ, ,ܤ ,ܣሺݔሺ݉ܽݔܽ݉ ሻ. This is equivalent toܥ ,ሻܤ  ሻܥ
and	݉ܽݔሺݔܽ݉,ܣሺܤ,  ሻ, which is an important consideration because it allows us to dealܥ
with the problem of finding the moments of the maximum of distributions in pairs. 

The random variable representing the maximum of two correlated distributions ଵܺ and ܺଶ 
can be defined as the function	ܸ ൌ ሼݔܽ݉ ଵܺ, ܺଶሽ.  To find the PDF of	ܸ, we must first find 
its CDF and differentiate to find the PDF.  In the independent case, 

ሻݒ௏ሺܨ  ൌ  .ሻݒ௑మሺܨሻݒ௑భሺܨ
  

10-1

To find the PDF we take the derivative WRT. ݒ: 

 ௏݂ሺݒሻ ൌ ௑݂భሺݒሻܨ௑మሺݒሻ ൅ ሻݒ௑భሺܨ ௑݂మሺݒሻ.  
 

10-2

The correlated case is much harder to solve.  Fortunately, IEEE Transactions on Very 
Large Scale Integration (VLSI) Systems (Nadarajah & Kotz, 2008) provides a method of 
calculating the first two moments of the max and min of two correlated Gaussian 
distributions.60, 61   

 The PDF of X=max(X1,X2) is f(x) = f1(x) + f2(x), where  

 ଵ݂ሺݔሻ ൌ 	 ଵ
ఙభ
߮ ቀఓభି௫

ఙభ
ቁߔ ቌ

ఘభ,మሺఓభି௫ሻ

ఙభටଵିఘభ,మమ
െ

ሺఓమି௫ሻ

ఙమටଵିఘభ,మమ
ቍ  

 ଶ݂ሺݔሻ ൌ 	 ଵ
ఙమ
߮ ቀఓమି௫

ఙమ
ቁߔ ቌ

ఘభ,మሺఓమି௫ሻ

ఙమටଵିఘభ,మమ
െ

ሺఓభି௫ሻ

ఙభටଵିఘభ,మమ
ቍ   

 

10-3

Where ߮() and ߔ() are the PDF and the CDF of the standard normal distribution, 

respectively. 

                                                 

60 Nadarajah, S., & Kotz, S. (2008, Feb.). Exact Distribution of the Max/Min of Two Gaussian Random 
Variables. IEEE Transactions on VLSI Systems, 16(2), 210-212. 
61 The integrated circuit industry has a deep interest in scheduling methods and routines which stems from 
the need to calculate signal transit and arrival times at nodes in integrated circuit paths.  
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The first two moments of ܺ ൌ ሺݔܽ݉ ଵܺ, ܺଶሻ are  

ሾܺሿܧ  ൌ ߔଵߤ ቀ
ఓభିఓమ
ఏ

ቁ ൅ ߔଶߤ ቀ
ఓమିఓభ
ఏ

ቁ ൅ ߮ߠ ቀఓభିఓమ
ఏ

ቁ  10-4

ሾܺଶሿܧ  ൌ ሺߪଵ
ଶ ൅ ଵߤ

ଶሻߔ ቀఓభିఓమ
ఏ

ቁ ൅ ሺߪଶ
ଶ ൅ ଶߤ

ଶሻߔ ቀఓమିఓభ
ఏ

ቁ ൅

ሺߤଵ ൅ ߮ߠଶሻߤ ቀ
ఓభିఓమ
ఏ

ቁ  

  

10-5

 
ߠ ൌ ටߪଵ

ଶ ൅ ଶߪ
ଶ െ   ଶߪଵߪଵ,ଶߩ2

where ߩଵ,ଶ = Pearson correlation between tasks ଵܺ and ܺଶ, and 

10-6

ଶߪ  ൌ ሾሺܺܧ െ ሻଶሿߤ ൌ ሾܺଶሿܧ െ   ଶߤ
 

10-7

The moments of the maximum and minimum of two joint lognormal distributions have 
been published (Lien, 2005) and are useful when dealing with maximums of sums of 
random variables that exhibit lognormal behavior.62  The first two raw moments of the 
bivariate lognormal distribution are provided in 10-8 and 10-9. 

ሾܺሿܧ  ൌ

ߔଵߤ ቂ
ሺ௉భି௉మሻା൫ொభ

మିఘொభொమ൯

ఏ
ቃ ൅ ߔଶߤ ቂ

ሺ௉మି௉భሻା൫ொమ
మିఘொభொమ൯

ఏ
ቃ  

10-8 

ሾܺଶሿܧ  ൌ ሺߪଵ
ଶ ൅ ଵߤ

ଶሻߔ ቀ௉భି௉మ
ఏ

ቁ ൅ ሺߪଶ
ଶ ൅ ଶߤ

ଶሻߔ ቀ௉మି௉భ
ఏ

ቁ  10-9 

ߠ  ൌ ඥܳଵ
ଶ ൅ ܳଶ

ଶ െ  ଵܳଶ where the correlation betweenܳߩ2
their underlying normal distributions is  

ߩ ൌ ଵ

ொభொమ
݈݊ ቈ1 ൅ ଵ,ଶߩ ቆටൣ݁ொభ

మ െ 1൧ൣ݁ொమమ െ 1൧ቇ቉ , and 

 ଵ,ଶ = Pearson correlation between lognormal distributions ofߩ
tasks ଵܺ and ܺଶ 
ଵܲ,	 ଶܲ,	ܳଵ,and ܳଶ are parameters of the lognormal distribution 

defined in Equations 4-5 and 4-6. 
 
 

10-10

While these are useful expressions for calculating the moments of Gaussian distributions 
that are either user-defined or formed through the statistical summation of PDFs of serial 
tasks, they do not provide a solution to the problem of finding moments of the maximum 
of two non-Gaussian distributions (e.g., uniform or triangular).   Fortunately, the moments 
of distributions in which we are interested represent the finish dates of tasks, and since 
these are often based on sums of durations of several tasks, we can assume the sum to be 

                                                 

62 Lien, D. (2005). On the Minimum and Maximum of Bivariate Lognormal Random Variables. Extremes, 8, 
79-83. 
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Gaussian.  For completeness, we do need a method of working with the order statistics of 
non-Gaussian PDFs. 

10.1.1 Maximum	and	Minimum	of	Correlated	Non‐Gaussian	PDFs	
The applied probability and statistics literature provides little insight into finding either the 
maximum or minimum of correlated non-Gaussian distributions.  So, when we are dealing 
with correlated non-Gaussian distributions, the task is more difficult.  For instance, when 
we are interested in the PDF of the maximum (or minimum) of two uniform distributions 
we have to go back to the fundamentals and derive a solution.  Figure 10-1 provides 
examples of pairs of uniform distributions ଵܷሺܮଵ, ,ଶܮଵሻ and ܷଶሺܪ  ଶሻ that represent casesܪ
in which the maximum of these two distributions will be different. 

 

Figure 10-1 Pairs of Uniform Distributions with Varying Ranges 

To find the PDF of the maximum of two distributions, we first must define a random 
variable,	ܸ ൌ ሼݔܽ݉ ଵܺ, ܺଶሽ, where	 ଵܺ ൌ ܷሺܮଵ, 	ଵሻ, andܪ ଵܺ ൌ ܷሺܮଶ,  ଶሻ. We find the PDFܪ
of ܸ by first finding its CDF, ܨ௏ሺݒሻ. 

ሻݒ௏ሺܨ    ൌ ܲሼܸ ൑ ሻݒ ൌ ܲሼ ଵܺ ൑ ,ݒ ܺଶ ൑  ሽݒ
 

10-11

In the independent case,	ܨ௏ሺݒሻ ൌ  ݒ ሻ.  Now take the derivative with respect toݒ௒ሺܨሻݒ௑ሺܨ
to get 

 ௏݂ሺݒሻ ൌ ௑݂ሺݒሻܨ௒ሺݒሻ ൅ ௒݂ሺݒሻܨ௑ሺݒሻ  
 

10-12

The kth moments are: 

ሾܧ   ௏݂
௞ሺݒሻሿ ൌ ׬ ௞ݒ

ஶ
ିஶ ௏݂ሺݒሻ݀ݒ  
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From which we can find the mean, 

ߤ   ൌ ሾܧ ௏݂ሺݒሻሿ  
 

10-14

and standard deviation of the resulting distribution. 

ଶߪ   ൌ ሾܧ ௏݂
ଶሺݒሻሿ െ  ଶߤ

 
10-15

The distributions of the maximums of the pairs of uniform distributions defined in Figure 
10-1 are shown in Figure 10-2. 

 

Figure 10-2 Maximum of Pairs of Uniform Distributions with Varying Ranges 

In the correlated case, the Farlie-Gumbel-Morgenstern (FGM) family of bivariate distributions 
may provide a solution.  The formula for the joint CDF is  

 ܹሺݔ, ሻݕ ൌ ሻሼ1ݕሺܩሻݔሺܨ ൅ ܽሾ1 െ ሻሿሾ1ݔሺܨ െ  ሻሿሽ, where theݕሺܩ
marginal PDFs ܪሺݔ,∞ሻ ൌ ,∞ሺܩ ሻ andݔሺܨ ሻݕ ൌ   ሻݕሺܩ
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Unfortunately it can only model a limited range of Pearson correlations63; െଵ

ଷ
൏ ߩ ൏ ଵ

ଷ
 . 

When ߩ௑,௒ ൌ 1, the two distributions covary in the same direction with respect to (wrt) their 

means.  When ߩ௑,௒ ൌ െ1, they covary in opposite directions wrt their means.  When ߩ௑,௒ ്

0, 	ܽ݊݀	 െ 1 ൏ ௑,௒ߩ ൏ 1	the results are rather interesting. 

                                                 

63 Schucany, W.R., Parr, W. C., and Boyer, J.E., (1978). Correlation Structure in Farlie-Gumbel-Morgenstern 
Distributions. Biometrika, 65(3), 650-653. 
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We will show some statistical simulation results to illustrate the effects of correlation on the 

maximum of two uniform distributions in the following figures.  We assume	 ଵܷ	ሾ1,5ሿ,	ܷଶ	ሾ1,3ሿ, 

and ߩ ൌ ሼെ1.0, െ0.9, െ0.5, 	0, 	0.5,0.9,1.0ሽ. 

 

Figure 10-3 Max of U1 and U2 where  = -1.0 

 

 

Figure 10-4 Max of U1 and U2 where  = -0.9 

 

 

Figure 10-5 Max of U1 and U2 where  = -0.5 
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Figure 10-6 Max of U1 and U2 where  = 0.0 

 

 

Figure 10-7 Max of U1 and U2 where  = 0.5 

 

 

Figure 10-8 Max of U1 and U2 where  = 0.9 
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Figure 10-9 Max of U1 and U2 where  = 1.0 

The PDF of the maximum of the two distributions modeled by a FGM, where	ߩ ൌ  ,3/ߙ
and െ1 ൑ ߙ ൑ 1) is:  

maxሺ ଵܷ, ܷଶሻ ൌ ݄ሺݑሻ ൌ ሺ1 ൅ ሻݑሻ݃ሺݑሺܨሻሾߙ ൅ ݂ሺݑሻܩሺݑሻሿ ൅ ሻݑሺܩሻݑሺܨሻሾ2ݑሺܩሻݑሼ݂ሺߙ	 െ
ሻݑሺܨ2 െ ሻሿݑሺܩ ൅ ሻݑሺܩሻݑሺܨሻሾ2ݑሻ݃ሺݑሺܨ െ ሻݑሺܩ2 െ   ሻሿሽݑሺܨ

A plot of this function is shown in Figure 10-10. 

 

Figure 10-10 Max of U1 and U2 using FGM Copula 

Further work needs to be done to increase the effective use of FGM copulas to find the 
maximum of two correlated, non-Gaussian distributions. 
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11 Example Problems 
To demonstrate the techniques presented in previous sections, we will perform analytic 
uncertainty and risk assessments on a parametric estimating model and a resource-loaded 
schedule model – both resulting in a joint PDF of cost and schedule.  Each example will 
model the cost risk, the schedule risk and the joint cost and schedule risk.  

11.1 Parametric	Estimate	Example	Problem	
The model chosen for the parametric example is an estimate of the cost and schedule used 
to explain functional correlation in Section 8.  The schedule duration is estimated using a 
series of fictitious schedule estimating relationships (SERs).  The joint probability 
distribution of cost and schedule is formed using the marginal distributions of cost and 
schedule.  We will demonstrate the formation of these three distributions and compare their 
statistics with those generated from a 100,000-trial statistical simulation. 

11.1.1 Cost	Distribution	
To calculate the marginal distribution of the cost of the system, we follow the FRISK 
method described in Section 4.2.2.  In the first step of the FRISK method, we define the 
mathematical problem to be solved – which is defining the WBS of the system and the 
CERs.  We will reuse the WBS and CERs defined in Section 8 and repeat them in Table 
11-1.  In the second step of the FRISK method, we define the probability distributions of 
the inputs (also shown in Table 11-1), and their correlations. 

Table 11-1 Level 1 WBS Elements for Parametric Example 

WBS 
Element, ࢏ 

CER, ࢏ Drivers ࢏ࢿ ࢏ࢄ 

1  Systems Engineering, 
Program Management 
Integration and Test 
(SEITPM) 

ଵܻ ൌ 0.498 ଵܺ
଴.ଽߝଵ  PMP 

ܮ~ ቆ
∑ ௜ߤ
ଵ଴
௜ୀଶ 	 ,

	ඥ࣌࣋ࢀ࣌
ቇ  

L(1,0.49) 

  Prime Mission Product 
(PMP) 

∑ ௜ܻ
ଵ଴
௜ୀଶ    Sum of Hardware and 

Software costs 
  0 

2  Antenna  ଶܻ ൌ 34.36ܺଶ௔
଴.ହܺଶ௕

଴.଼ߝଶ  Aperture Diameter (m), 
Frequency (GHz) 

T(2,3,4) 
T(16,17,18) 

L(1,0.30) 

3  Electronics  ଷܻ ൌ 30.06ܺଷ
଴.଼ߝଷ  Frequency (GHz)  T(16,17,18)  L(1,0.40) 

4  Platform  ସܻ ൌ 26.91ܺସ௔
଴.ହܺସ௕

଴.଼ହߝସ  Aperture Diameter (m), 
Number of Axes 

T(2,3,4) 
Constant = 2 

L(1,0.38) 

5  Facilities  ହܻ ൌ 1.64ܺହ
଴.଼ߝହ  Area (m

2)  T(18,20,22)  L(1,0.25) 

6  Power Distribution  ଺ܻ ൌ 0.32ܺ଺
଴.ଽߝ଺  Electrical Power (W)  T(1200,1425,1875)  L(1,0.18) 

7  Computers  ଻ܻ ൌ 0.58ܺ଻
଴.଼଻ߝ଻  MFLOPS  T(180,200,220)  L(1,0.31) 

8  Environmental Control  ଼ܻ ൌ 1.94଼ܺ
଴.ସ଼ߝ  Heat Load (W)  T(1100,1200,1300)  L(1,0.21) 

9  Communications  ଽܻ ൌ 5.62ܺଽ
଴.ଽߝଽ  Data Rate (MBPS)  T(25,30,35)  L(1,0.28) 

10  Software  ଵܻ଴ ൌ 1.38 ଵܺ଴
ଵ.ଶߝଵ଴  Effective Source Lines 

of Code, eKSLOC 
T(80,90,130)  L(1,0.32) 
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There are no correlations between different technical parameters used as inputs to the 
CERs in this example, and there are no correlations between the error of CER 1 and any 
errors of the other CERs, but the correlations between the errors of CERs 2 through 10 are 
set to 0.2 (ߩఌ೔,ఌೕୀ଴.ଶ; 	∀݅ ൒ 2).  The correlation matrix of the errors is shown in Figure 11-1. 

 

Figure 11-1 Correlations between Errors of CERs 1 through 10 

There is a mix of different types and orders of functional correlation in this example 
problem as shown in Figure 11-2.  CER 1 is functionally correlated to the other CERs 
through its use of PMP as its cost driver (a Type I-2 correlation).  CERs 2 and 3 and CERs 
2 and 4 are correlated through the reuse of a cost driver (a Type II-1 correlation).  The 
remaining CER pairs are correlated to each other through their correlated multiplicative 
errors (a Type III-1 correlation).  

 

Figure 11-2 Types of Functional Correlation in Example Problem 

11.1.2 Probability	Distributions	
The third step of the FRISK method is the calculation of the means and variances of the 
WBS element costs.  The first WBS element, SEITPM, is a cost-on-cost CER of the PMP 
(i.e., the sum of the individual estimates of WBS elements 2 through 10).  The remaining 
WBS elements are estimated using non-cost-driven CERs.  Because the first WBS element 
relies on the cost estimates of the other WBS elements, we must first calculate the means 

i,j 1 2 3 4 5 6 7 8 9 10

1 1 0 0 0 0 0 0 0 0 0

2 0 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

3 0 0.2 1 0.2 0.2 0.2 0.2 0.2 0.2 0.2

4 0 0.2 0.2 1 0.2 0.2 0.2 0.2 0.2 0.2

5 0 0.2 0.2 0.2 1 0.2 0.2 0.2 0.2 0.2

6 0 0.2 0.2 0.2 0.2 1 0.2 0.2 0.2 0.2

7 0 0.2 0.2 0.2 0.2 0.2 1 0.2 0.2 0.2

8 0 0.2 0.2 0.2 0.2 0.2 0.2 1 0.2 0.2

9 0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1 0.2

10 0 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 1

yi,yj 1 2 3 4 5 6 7 8 9 10

1 1.0000 I‐2 I‐2 I‐2 I‐2 I‐2 I‐2 I‐2 I‐2 I‐2

2 I‐2 1.0000 II‐1 II‐1 III‐1 III‐1 III‐1 III‐1 III‐1 III‐1

3 I‐2 II‐1 1.0000 III‐1 III‐1 III‐1 III‐1 III‐1 III‐1 III‐1

4 I‐2 II‐1 III‐1 1.0000 III‐1 III‐1 III‐1 III‐1 III‐1 III‐1

5 I‐2 III‐1 III‐1 III‐1 1.0000 III‐1 III‐1 III‐1 III‐1 III‐1

6 I‐2 III‐1 III‐1 III‐1 III‐1 1.0000 III‐1 III‐1 III‐1 III‐1

7 I‐2 III‐1 III‐1 III‐1 III‐1 III‐1 1.0000 III‐1 III‐1 III‐1

8 I‐2 III‐1 III‐1 III‐1 III‐1 III‐1 III‐1 1.0000 III‐1 III‐1

9 I‐2 III‐1 III‐1 III‐1 III‐1 III‐1 III‐1 III‐1 1.0000 III‐1

10 I‐2 III‐1 III‐1 III‐1 III‐1 III‐1 III‐1 III‐1 III‐1 1.0000
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and variances of the costs of WBS elements 2 through 10 (i.e., PMP cost) then use those 
results to calculate the mean and variance of the first WBS element. 

The moments of the estimates from non-cost-driven CERs are calculated using the 
propagation of errors method demonstrated in Section 7.  As an example, WBS element 6 
is estimated using the following CER from Section 8: 

଺ܻ ൌ 0.32ܺ଺
଴.ଽߝ଺ 

EሾX଺ሿ ൌ μଡ଼ల, which is found using Equation 4-1. 

Since	X଺	is	defined	by	the	triangular	PDF,	Tሺ1200,1425,1875ሻ,		

μଡ଼ల ൌ
ଵଶ଴଴ାଵସଶହାଵ଼଻ହ

ଷ
ൌ 1500		

Eሾ ଺ܻሿ	can be found by using expectation methods or Mellin transforms.  In this example, 
we will use expectation methods to compute	Eሾ ଺ܻሿ. 

Eሾ ଺ܻሿ ൌ Eൣ0.32ܺ଺
଴.ଽߝ଺൧ ൌ 0.32Eൣܺ଺

଴.ଽ൧Eሾߝ଺ሿ, and since	Eሾߝ଺ሿ ൌ 1, Eሾ ଺ܻሿ ൌ 0.32Eൣܺ଺
଴.ଽ൧. 

Since ܺ଺ is a triangular PDF, we must find the expectation of a triangular PDF raised to a 
power, which is: 

୩൧ܺൣܧ ൌ ଶ

ሺுି௅ሻሺெି௅ሻ
ቄெ

ೖశమି௅ೖశమ

௞ାଶ
െ ܮ ெೖశభି௅ೖశభ

௞ାଵ
ቅ ൅ ଶ

ሺுି௅ሻሺுିெሻ
ቄܪ ுೖశభିெೖశభ

௞ାଵ
െ ுೖశమିெೖశమ

௞ାଶ
ቅ  

Substituting the parameters L, M, H and k using our example,	Eൣܺ଺
଴.ଽ൧ ൌ 721.626, so 

Eሾ ଺ܻሿ ൌ ሺ0.32ሻሺ721.626ሻ ൌ 230.920. 

 is calculated using the square of one half of the population standard deviation of		ሺܺ଺ሻݎܸܽ
the distributions parameters.  This equates to:  

ሺܺ଺ሻݎܸܽ ൌ ቀௌ்஽ா௏௉ሺଵଶ଴଴,ଵସଶହ,ଵ଼଻ହሻ
ଶ

ቁ
ଶ
ൌ 19687.5, so ߪ௑ల ൌ √19687.5 ൌ 140.31	

The variance of Y is calculated using the propagation of errors method, since the CER, ௒݂ల, 

and its error are independent RVs. 

ሺܻሻݎܸܽ ൌ 	 ቀߤ௙ೊలߪఌలቁ
ଶ
൅ ቀߪ௙ೊలቁ

ଶ
൅ ቀߪ௙ೊలߪఌలቁ

ଶ
 ; where  

ఌలߪ ൌ 0.18	 (from Table 11-1), and ߤ௙ೊల ൌ 	230.920 (found using functional correlation 

Step 2a) 

௙ೊలߪ is found using the equation for the transformation of a triangular PDF from Section 

4.3.3. 
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௙ೊలߪ ൌ

ܾට ଶ

ሺுି௅ሻ
ቂ ଵ

ሺெି௅ሻ
ቄெ

మ೎శమି௅మ೎శమ

ଶ௖ାଶ
െ ܮ ெమ೎శభି௅మ೎శభ

ଶ௖ାଵ
ቅ ൅ ଵ

ሺுିெሻ
ቄܪ ுమ೎శభିெమ೎శభ

ଶ௖ାଵ
െ ுమ೎శమିெమ೎శమ

ଶ௖ାଶ
ቅቃ െ ቀ

ఓ೑
௕
ቁ
ଶ
	  

By substituting the coefficient ܾ ൌ 0.32 and the triangular distribution parameters, ܯ,ܮ 
and ܪ into this equation we get ߪ௙ೊల ൌ 19.428. 

So ߪ௒ల ൌ ට	ቀߤ௙ೊలߪఌలቁ
ଶ
൅ ቀߪ௙ೊలቁ

ଶ
൅ ቀߪ௙ೊలߪఌలቁ

ଶ
 

௒లߪ ൌ ඥ	ሾሺ230.920ሻሺ0.18ሻሿଶ ൅ ሾ19.428ሿଶ ൅ ሾሺ19.428ሻሺ0.18ሻሿଶ ൌ 46.015  

The remaining moments of the cost estimates of the non-cost-driven CERs in the example 
problem are computed in a similar manner and are shown in Table 11-2.  The means and 
standard deviations of the analytic results match closely with the results obtained using the 
100,000-trial statistical simulation.  The results of the analytic method and the statistical 
simulation are a close match. 

Table 11-2 Moments of WBS Elements with Non-Cost-Driven CERs 

WBS 
# 

Analytic  Simulation 

   
2  572.706 177.022 572.676 176.900 

3  289.953 116.136 289.962 116.172 

4  83.829 32.484 83.824 32.463 

5  18.014 4.544 18.014 4.543 

6  230.920 46.015 230.911 45.977 

7  58.248 18.186 58.244 18.172 

8  33.068 6.960 33.068 6.959 

9  119.965 34.446 119.962 34.420 

10  347.121 120.764 347.121 120.787 

 

The PMP cost is the sum of WBS elements 2 through 10, so its mean is ߤ௉ெ௉ ൌ ∑ ௜ଵ଴ߤ
ଶ  and 

its standard deviation is calculated through the linear algebraic relationship,	ߪ௉ெ௉ ൌ

ඥߤ  .࣌࣋ࢀ࣌௉ெ௉	is simple to compute and is	ߤ௉ெ௉ ൌ ∑ ௜ଵ଴ߤ
ଶ ൌ 1753.825. The calculation of  

 which ,࣋	,௉ெ௉ requires we know the correlation between pairs of CERs from 2 through 10ߪ
is the functional correlation sub-matrix between the elements of PMP. 

Functional Correlation Matrix 
The functional correlation matrix shown in Figure 11-2 contains a combination of Type I-
2, II-1 and III-1 functional correlations.  We use the examples provided in Section 8 of this 
report to develop these correlations, which are shown in Figure 11-3. 
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Figure 11-3 Functional Correlation Matrix for Example Problem 

Using the functional correlation sub-matrix (i.e., the lower-right 9x9 elements of the matrix 
shown in Figure 11-3) and the sigmas of WBS elements 2 through 10, we can compute 

௉ெ௉ߪ ൌ ඥ࣌࣋ࢀ࣌ ൌ 331.917.  Now that we know the moments of PMP and the functional 

correlation sub-matrix, we can calculate the moments of the first WBS element, ߤ௒భ and 

 ௒భ.   The results of this example calculation are shown in Section 8 and are repeated inߪ

Table 11-3. The results of the analytic method and the statistical simulation are a close 
match. 

Table 11-3 Moments of WBS Elements 

WBS 
# 

Analytic  Simulation 

   
1  413.170 201.048 413.090 200.916 

2  572.706 177.022 572.676 176.900 

3  289.953 116.136 289.962 116.172 

4  83.829 32.484 83.824 32.463 

5  18.014 4.544 18.014 4.543 

6  230.920 46.015 230.911 45.977 

7  58.248 18.186 58.244 18.172 

8  33.068 6.960 33.068 6.959 

9  119.965 34.446 119.962 34.420 

10  347.121 120.764 347.121 120.787 

 

Now that the necessary calculations to compute the moments of the total program cost are 
completed, the total cost mean, ߤ௒, and the total cost sigma, ߪ௒ can be calculated. 

௒ߤ ൌ ∑ ௜ଵ଴ߤ
ଵ  and ߪ௒ ൌ ඥ࣌࣋ࢀ࣌, where ࣌ is the vector of the sigmas of all of the WBS 

elements (Table x-3), and	࣋ is the full functional correlation matrix shown in Figure 11-3.  
The results of these calculations are shown in Table 11-4 along with the total mean and 

yi,yj 1 2 3 4 5 6 7 8 9 10

1 1.0000 0.2614 0.2098 0.1454 0.1156 0.1426 0.1273 0.1184 0.1393 0.2085

2 0.2614 1.0000 0.1969 0.2306 0.1924 0.1753 0.1927 0.1937 0.1893 0.1785

3 0.2098 0.1969 1.0000 0.1959 0.1979 0.1804 0.1983 0.1993 0.1948 0.1837

4 0.1454 0.2306 0.1959 1.0000 0.1944 0.1772 0.1947 0.1957 0.1912 0.1804

5 0.1156 0.1924 0.1979 0.1944 1.0000 0.1790 0.1968 0.1978 0.1933 0.1823

6 0.1426 0.1753 0.1804 0.1772 0.1790 1.0000 0.1794 0.1803 0.1762 0.1662

7 0.1273 0.1927 0.1983 0.1947 0.1968 0.1794 1.0000 0.1981 0.1936 0.1827

8 0.1184 0.1937 0.1993 0.1957 0.1978 0.1803 0.1981 1.0000 0.1946 0.1836

9 0.1393 0.1893 0.1948 0.1912 0.1933 0.1762 0.1936 0.1946 1.0000 0.1794

10 0.2085 0.1785 0.1837 0.1804 0.1823 0.1662 0.1827 0.1836 0.1794 1.0000
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standard deviation obtained using the 100,000-trial statistical simulation.  Again, the 
results are a close match. 

Table 11-4 Moments of Total Program Cost 

Analytic Simulation 

   
Total  2166.995 443.915 2166.873 443.511 

 

The total program cost is represented as a lognormal distribution and its parameters ௒ܲ and 
ܳ௒ are calculated using Equations 4-5 and 4-6.  The results are: 

௒ܲ ൌ 7.452, and ܳ௒ ൌ 0.188.   

Using these values, we can compute the percentiles of total cost, which are presented in 
Table 11-5. 

Table 11-5 Table Percentiles of Total Cost 

Percentile Total Cost, Y
10% 1637.140582

20% 1789.878287

30% 1908.780462

40% 2016.616222

50% 2122.909227

60% 2234.804788

70% 2361.059157

80% 2517.905056

90% 2752.814045

 

The plot of the CDF of total cost is shown in Figure 11-4.  Note that the original point 
estimate calculated using the modes of the triangular inputs shown in Table 11-1 is at the 
48th percentile. 
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Figure 11-4 CDF of Total Cost, Y 

11.1.2.1 Contribution to Variance 
The contribution to the variance (CTV) shows which WBS elements most strongly 
influence the variance of total cost.  The CTV of any WBS element, ݅, can be calculated 
using row ݅ of the functional correlation matrix as follows: 

ܶܥ ௜ܸ ൌ  ௒ଶ, whereߪ/ሻ࣌࢏࣋ሺ	௜ߪ
 ݅ ௜ = the standard deviation of WBS elementߪ
 row ݅ of the full functional correlation matrix (a vector) =	࢏࣋
 the vector of standard deviations of the WBS elements = ࣌
 = total cost variance	௒ଶߪ

The CTV of each of the WBS elements is shown in Figure 11-5.	

 

Figure 11-5 WBS Element Contribution to Variance 

11.1.3 Schedule	Probability	Distribution	
The program schedule is calculated using a fictitious schedule estimating relationship 
(SER) defined as the number of months from the authority-to-proceed (ATP) to the end of 
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installation and checkout,	ܦ ൌ 0.21ܺ஽
ଵ.ଶߝ஽.  The SER is similar to the Software CER and 

reuses its driver (effective source lines of code).  The multiplicative error of the SER,	ߝ஽, is 
defined by the  lognormal distribution Lሺ1,0.45ሻ.  Since the SER in this example problem 
is similar to the CER of WBS element 10 (Software cost), we substitute the coefficients 
and multiplicative error distribution to directly calculate the moments of the resulting 
schedule distribution, which are: 

஽ߤ ൌ 52.823, and ߪ஽ ൌ 24.935. 

This distribution is assumed to be lognormal and has parameters ஽ܲ ൌ 	3.866 and ܳ஽ ൌ
0.449.  A plot of the CDF of schedule duration is shown in Figure 11-6. 

 

Figure 11-6 Schedule Duration CDF 

11.1.4 Forming	the	Joint	Distribution	
The joint distribution of cost and schedule duration is formed using the marginal cost and 
schedule duration distributions in a bivariate lognormal distribution.  This joint PDF is 
defined in Garvey (2000) as:64 

ܮ݅ܤ ቀሺ ଵܲ, ଶܲሻ, ൫ܳଵ, ܳଶ, ଵ,ଶ൯ቁߩ ൌ ௑݂భ,௑మሺݔଵ, ଶሻݔ ൌ
ଵ

ଶగொభொమටଵିఘభ,మ
మ ௫భ௫మ

݁ିቄ
భ
మ
௪ቅ	;	where	

ݓ ൌ ଵ

ଵିఘభ,మ
మ ൤ቀ௟௡

ሺ௫భሻି௉భ
ொభ

ቁ
ଶ
െ ଵ,ଶߩ2 ቀ

௟௡ሺ௫భሻି௉భ
ொభ

ቁ ቀ௟௡
ሺ௫మሻି௉మ
ொమ

ቁ ൅ ቀ௟௡
ሺ௫మሻି௉మ
ொమ

ቁ
ଶ
൨,		

ଵ,ଶߩ  ൌ
ଵ

ொభொమ
ln ቂ1 ൅ ௑భ,௑మඥ݁ߩ

ொభ
మ
െ 1ඥ݁ொమ

మ
െ 1ቃ, and  

 .and ܺଶ	௑భ,௑మis the correlation coefficient between RVs ଵܺߩ

                                                 

64 Garvey, P. R. (2000). Probability Methods for Cost Uncertainty Analysis: A Systems Engineeering 
Perspective. New York, NY: Marcel Dekker. 
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The correlation between cost and schedule is a Type II-2 functional correlation since cost 
(ܻ) and schedule duration (ܦ) are nested functions of a common input, the effective source 
lines of code. 

The Type II-2 functional correlation between cost and schedule duration is defined as:  

௒,஽ߩ ൌ
ாሾ௒஽ሿିఓೊఓವ

ఙೊఙವ
. 

The moments of ܻ and ܦ have been previously calculated, however ܧሾܻܦሿ must be found.  
By expanding the product,	ܻܦ, we get: 

ܦܻ ൌ ሺ∑ ௜ܻ
ଵ଴
௜ୀଵ ሻ൫0.21ܺ஽

ଵ.ଶߝ஽൯, which expands further to ܻܦ ൌ ሺ∑ ௜ܻ
ଵ଴
௜ୀଵ ሻ൫0.21ܺ஽

ଵ.ଶߝ஽൯.   

A fuller expansion of these terms is necessary to calculate the expectation.  Substituting the 
equations of CERs 1 and 10 and setting ܺ஽ ൌ ଵܺ଴, we get: 

ܦܻ  ൌ ൫0.498ሾ∑ ௜ܻ
ଵ଴
௜ୀଶ ሿ଴.ଽߝଵ ൅ 1.38 ଵܺ଴

ଵ.ଶߝଵ଴ ൅ ∑ ௜ܻ
ଽ
௜ୀଶ ൯൫0.21 ଵܺ଴

ଵ.ଶߝ஽൯ 

Through distribution of the SER, we get: 

ܦܻ ൌ ሺ0.498ሾ∑ ௜ܻ
ଵ଴
௜ୀଶ ሿ଴.ଽߝଵሻ൫0.21ܺ஽

ଵ.ଶߝ஽൯ ൅ ൫1.38 ଵܺ଴
ଵ.ଶߝଵ଴൯൫0.21 ଵܺ଴

ଵ.ଶߝ஽൯ ൅

ሺ∑ ௜ܻ
ଽ
௜ୀଶ ሻ൫0.21 ଵܺ଴

ଵ.ଶߝ஽൯  

Combining constants and similar variables results in:  

ܦܻ ൌ 0.1046ሾ∑ ௜ܻ
ଵ଴
௜ୀଶ ሿ଴.ଽ ଵܺ଴

ଵ.ଶߝଵߝ஽ ൅ 0.2898 ଵܺ଴
ଶ.ସߝଵ଴ߝ஽ ൅ ሺ∑ ௜ܻ

ଽ
௜ୀଶ ሻ൫0.21 ଵܺ଴

ଵ.ଶߝ஽൯  

Moving ܺ஽
ଵ.ଶ into the summation, we get a sum with three major terms: 

ܦܻ ൌ 0.1046 ቂ∑ ௜ܻ
ଵ଴
௜ୀଶ ଵܺ଴

భ.మ
బ.వቃ

଴.ଽ
஽ߝଵߝ ൅ 0.2898 ଵܺ଴

ଶ.ସߝଵ଴ߝ஽ ൅ ∑ ௜ܻ
ଽ
௜ୀଶ ൫0.21ܺ஽

ଵ.ଶߝ஽൯  

11.1.4.1 Expectation of ࡰࢅ 
The expectation of ܻܦ is: 

Eሾܻܦሿ ൌ ܧ ൤0.1046 ቂ∑ ௜ܻ
ଵ଴
௜ୀଶ ଵܺ଴

భ.మ
బ.వቃ

଴.ଽ
൨ ஽ሿߝሾܧଵሿߝሾܧ ൅ 0.2898ൣܧ ଵܺ଴

ଶ.ସ൧ܧሾߝଵ଴ሿܧሾߝ஽ሿ ൅

∑ሾܧ ௜ܻ
ଽ
௜ୀଶ   .ሿܦ

From the first term, we can break up the ଵܺ଴ component and eliminate	ܧሾߝଵሿܧሾߝ஽ሿ, since 
they are uncorrelated (i.e., ܧሾߝଵሿܧሾߝ஽ሿ ൌ 1). 

ܧ ൤0.1046 ቂ∑ ௜ܻ
ଵ଴
௜ୀଶ ଵܺ଴

భ.మ
బ.వቃ

଴.ଽ
൨ ൌ ܧ0.1046 ቂ1.38 ଵܺ଴

ቄଵ.ଶାభ.మ
బ.వ
ቅߝଵ଴ ൅ ∑ ௜ܻ

ଽ
௜ୀଶ ܺ஽

భ.మ
బ.వቃ

଴.ଽ
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First Term of ࡱሾࡰࢅሿ 

For convenience, we rename the first term (1.38 ଵܺ଴
ቄଵ.ଶାభ.మ

బ.వ
ቅߝଵ଴ ൅ ∑ ௜ܻ

ଽ
௜ୀଶ ܺ஽

భ.మ
బ.వ	) to (ܸ ൌ

ଵܸ ൅ ଶܸ), which results in: 

 ଵܸ ൌ 1.38 ଵܺ଴
ቄଵ.ଶାభ.మ

బ.వ
ቅߝଵ଴, which, by inspection, is a lognormal distribution. 

Computing ࢂ૚ 

The lognormal parameters of ଵܸ(i.e., ௏ܲభand ܳ௏భ) can be computed as follows: 

1) Compute the moments and lognormal parameters of ܣ ൌ ଵܺ଴
ቄଵ.ଶାభ.మ

బ.వ
ቅ: 

a.  ܧሾܣሿ ൌ ቂ ଵܺ଴
ቄଵ.ଶାభ.మ

బ.వ
ቅቃ ൌ ൣܧ ଵܺ଴

ଶ.ହଷଷଷ൧ ൌ 119237.5843, and 

b. ܸܽݎሺܣሻ ൌ ൫ ଵܺ଴
ଶ.ହଷଷଷ൯ ൌ 1115733687, so  

c. ஺ܲ ൌ 11.6511, ܳ஺ ൌ 0.2749 
d. Propagate errors due to εଵ଴, where ܧሾߝଵ଴ሿ ൌ ఌభబߪ ,1 ൌ 0.32 

2) ଵܸ ൌ  :ଵ଴, so the moments and lognormal parameters areߝܣ1.38
a. ߤ௏భ ൌ ଵ଴ሿߝሾܧ஺ߤ1.38 ൌ 164547.866 

b. ߪ௏భ ൌ 1.38ටߪ஺ଶ ൅ ఌభబߪ஺ଶߤ
ଶ ൅ ఌభబߪ஺ଶߪ

ଶ ൌ 68491.075 

c. ௏ܲభ ൌ 11.931 

d. ܳ௏భ ൌ 0.400 

Computing ࢂ૛ 

The lognormal parameters of ଶܸ ൌ ∑ ௜ܻܺ஽
భ.మ
బ.వଽ

௜ୀଶ  are able to be computed as well.  First, we 

must compute the mean and sigma of ܺ஽
భ.మ
బ.వ. 

1) The variable ܺ஽ is a triangular distribution, so ܺ஽
భ.మ
బ.వ has the following moments:  

a. ߤ
௑ವ

భ.మ
బ.వ
ൌ ߪ ,465.351

௑ವ
భ.మ
బ.వ
ൌ 67.365, 

b. ܲ
௑ವ

భ.మ
బ.వ
ൌ 6.132, and ܳ

௑ವ
భ.మ
బ.వ
ൌ 0.144 

2) For each WBS element from 2 to 9, compute the moments of ௜ܻܺ஽
భ.మ
బ.వ 

a. ܲ
௒೔௑ವ

భ.మ
బ.వఌభ

భ
బ.వ
ൌ ௒ܲ೔ ൅ ܲ

௑ವ
భ.మ
బ.వఌభ

భ
బ.వ

 

b. ܳ
௒೔௑ವ

భ.మ
బ.వఌభ

భ
బ.వ
ൌ ඨ൫ܳ௒೔൯

ଶ
൅ ൬ܳ

௑ವ
భ.మ
బ.వఌభ

భ
బ.వ
൰
ଶ

 (in this case ܺ஽ and CERs 2 to 9 are 

independent) 

The results of these calculations for WBS elements 2 through 9 are shown in Table 11-6. 
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Table 11-6 Moments of First Term, Part ࢂ૛ 

ࡼ ࢏ࢅࡽ ࢏ࢅࡼ ࢏
ࡰࢄ࢏ࢅ

૚.૛
૙.ૢ

ࡽ
ࡰࢄ࢏ࢅ

૚.૛
૙.ૢ

ࣆ
ࡰࢄ࢏ࢅ

૚.૛
૙.ૢ

࣌ 
ࡰࢄ࢏ࢅ

૚.૛
૙.ૢ

2 6.305 0.302 12.437 0.335 266509.704 89209.682
3 5.595 0.386 11.728 0.412 134930.196 55589.229
4 4.359 0.374 10.491 0.401 39009.722 15643.639
5 2.860 0.248 8.993 0.287 8382.836 2407.118
6 5.423 0.197 11.555 0.244 107459.119 26253.462
7 4.018 0.305 10.151 0.337 27105.923 9144.805
8 3.477 0.208 9.609 0.253 15388.452 3895.777
9 4.748 0.281 10.880 0.316 55825.914 17654.212

Sum   654611.865 139002.227*
*This is not the sum of the individual sigmas.  

μ୚మis the sum of the means in Table 11-6.  σ୚మ	is calculated using σ୚మ ൌ ටો܄૛
 ,૛܄ો்࣋

where ࣋ is the functional correlation sub-matrix of WBS elements 2 through 9 in Figure 
11-3. 

μ୚భ ൌ 1.38μ୅ ൌ 164547.866, and μ୚మ ൌ 654611.865	(from Table 11-6), so μ୚ is: 

μ୚ ൌ ௏భߤ ൅ ௏మߤ ൌ 164547.866 ൅ 654611.865 ൌ 819159.732. 

σ୚భ ൌ 68491.075, and σ୚మ ൌ 139002.227	(from Table 11-6), so σ୚ is the square root of 

the sum of the variances of	 ଵܸ	and	 ଶܸ: 

σ୚ ൌ ට൫σ௏భ൯ ൅ ൫σ௏మ൯ ൌ 154960.1446. 

From	μ୚	and	σ୚, we calculate the lognormal parameters ௏ܲand ܳ௏using Equations 4-5 
and4-6:	 ௏ܲ ൌ 13.598, and ܳ௏ ൌ 0.189.  The mean of the first term is computed by finding 
the expectation of an exponentiated lognormal RV: 

ሾܸ଴.ଽሿܧ ൌ 	209577.473, and by multiplication with the constant, 0.1046, we get: 

ሾܸ଴.ଽሿܧ0.1046 ൌ 21918.22. 

Second Term of ࡱሾࡰࢅሿ 
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The second term is simple to compute, as: 

0.2898ൣܧ ଵܺ଴
ଶ.ସߝଵ଴ߝ஽൧ ൌ ൣܧ0.2898 ଵܺ଴

ଶ.ସ൧ܧሾߝଵ଴ߝ஽ሿ ൌ ൣܧ0.2898 ଵܺ଴
ଶ.ସ൧  

Since ଵܺ଴ is triangularly distributed, with T(80,90,130), ൣܧ ଵܺ଴
ଶ.ସ൧ ൌ 64340.222.  The 

second term is  0.2898Eሾ64340.222ሿ ൌ 18645.796. 

The third term reduces to the following, since there are no correlated terms: 

∑ሾܧ ௜ܻ
ଽ
௜ୀଶ ሿܦ ൌ ∑ ሾܧ ௜ܻܦሿ

ଽ
௜ୀଶ ൌ ∑ ሾܧ ௜ܻሿܧሾܦሿ

ଽ
௜ୀଶ ൌ ஽ߤ ∑ ௒೔ߤ

ଽ
௜ୀଶ ൌ ሺ52.823ሻሺ1406.704ሻ ൌ

74305.896  

Summing these three terms gets us:  

Eሾܻܦሿ ൌ ܧ ൤0.1046 ቂ∑ ௜ܻ
ଵ଴
௜ୀଶ ଵܺ଴

భ.మ
బ.వሺߝଵሻ

భ
బ.వቃ

଴.ଽ
൨ ൅ 0.2898ൣܧ ଵܺ଴

ଶ.ସߝଵ଴ߝ஽൧ ൅ ∑ሾܧ ௜ܻ
ଽ
௜ୀଶ  ,ሿܦ

and Eሾܻܦሿ ൌ 21918.224 ൅ 18645.796 ൅ 74305.896 ൌ 114869.916. 

Now that all of the variables of the functional correlation have been obtained, the 
correlation can be computed as: 

௒,஽ߩ ൌ
ሿܦሾܻܧ െ ஽ߤ௒ߤ

஽ߪ௒ߪ
ൌ
114869.916 െ ሺ2166.995ሻሺ52.823ሻ

ሺ443.915ሻሺ24.935ሻ
ൌ 0.0364 

The value ߩ௒,஽ calculated from a 100,000-trial statistical simulation is 0.0366, which 

indicates excellent agreement with the analytic result. 

11.1.4.2 Joint PDF of Cost and Schedule 
The joint PDF of cost and schedule is computed using a bivariate lognormal distribution.  
The bivariate lognormal distribution is defined by the moments of the cost and schedule 
distributions and the correlation between the two distributions Figure 11-7. 

 

Figure 11-7 Joint PDF of Cost and Schedule 
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11.2 Resource‐Loaded	Schedule	Example	
NASA provided a schedule network of a rocket engine program (Table 11-7 and Figure 
11-8) which will be used to demonstrate the analytic method of uncertainty analysis on a 
resource-loaded schedule.  This example demonstrates the application of the analytic 
method by providing a schedule risk analysis (including a probabilistic critical path 
analysis), a cost risk analysis, and a joint cost and schedule risk analysis.  In this section 
we show how we developed the cost PDF, schedule PDF, joint cost and schedule PDF and 
a probabilistic critical path analysis for the program. 

Table 11-7 NASA Resource-Loaded Schedule Example 

 

The nominal start and finish dates for the program are 10/1/2012 (defined by task 3, which 
is the project’s ATP date), and 12/18/2015 (defined by tasks 6 and 32 which are the tasks 
that define the delivery date), respectively.  Using the nominal dates and durations, we get 
a point estimate of schedule duration equal to 1173 calendar days.  The milestone 
summaries are tasks 2 through 6; the program support “hammock tasks” are tasks 7 

ID Task Duration Start Finish Predecessor Successor

1 JACS Analysis File 840 days 10/1/2012 12/18/2015

2 Milestone Summary 840 days 10/1/2012 12/18/2015

3 Project ATP 0 days 10/1/2012 10/1/2012 11,8SS

4 PDR 0 days 4/26/2013 4/26/2013 12FF

5 CDR 0 days 10/24/2014 10/24/2014 20FF

6 Rocket delivery 0 days 12/18/2015 12/18/2015 32FF 9FF

7 Project Support Costs hammock task 840 days 10/1/2012 12/18/2015

8 Support Start 0 days 10/1/2012 10/1/2012 3SS

9 Support Finish 0 days 12/18/2015 12/18/2015 6FF

10 Preliminary Design 150 days 10/1/2012 4/26/2013

11 Requirements definition and documentation 100 days 10/1/2012 2/15/2013 3 12

12 Preliminary design activities 50 days 2/18/2013 4/26/2013 11 14,4FF

13 Detailed Design 390 days 4/29/2013 10/24/2014

14 Initial detailed design 80 days 4/29/2013 8/16/2013 12 15,16

15 Design GN&C 160 days 8/19/2013 3/28/2014 14 20

16 Trade studies and analysis 60 days 8/19/2013 11/8/2013 14 17,18,19,35

17 Design pyrotechnics 100 days 11/11/2013 3/28/2014 16,35 20

18 Design propulsion system 160 days 11/11/2013 6/20/2014 16,35 20

19 Design structures and mechanisms 120 days 11/11/2013 4/25/2014 16,35 20

20 Finalize integrated design 90 days 6/23/2014 10/24/2014 17,18,15,19 25,5FF,23,24

21 Development and Unit Testing 150 days 10/27/2014 5/22/2015

22 Fabricate rocket Components 120 days 10/27/2014 4/10/2015

23 Fabricate and unit test structure (including pyros) 120 days 10/27/2014 4/10/2015 20 27

24 Fabricate and unit test engine 120 days 10/27/2014 4/10/2015 20 27,34

25 Develop and test flight software for GN&C 150 days 10/27/2014 5/22/2015 20 29,36

26 Integration and Testing 170 days 4/13/2015 12/4/2015

27 Integrate rocket components 40 days 4/13/2015 6/5/2015 23,24,34 28,29

28 Test frame, fuel system and engine 35 days 6/8/2015 7/24/2015 27 30

29 Test guidance system 60 days 6/8/2015 8/28/2015 25,27,36 30

30 Final integration and testing 70 days 8/31/2015 12/4/2015 28,29 32

31 Delivery 10 days 12/7/2015 12/18/2015

32 Delivery 10 days 12/7/2015 12/18/2015 30 6FF

33 Risk Register 400 days 11/8/2013 5/22/2015

34 Risk 1 ‐ TI ‐ Additional Purchase 0 days 4/10/2015 4/10/2015 24 27

35 Risk 2 ‐ Duration ‐ Additional Studies Required 0 days 11/8/2013 11/8/2013 16 17,18,19

36 Risk 3 ‐ TI and Duration ‐ Delay from Additional SW Purchase0 days 5/22/2015 5/22/2015 25 29
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through 9 whose duration is defined by the ATP and delivery dates; the design, 
development, integration, test and delivery tasks are tasks 10 through 32; and the program 
risks are tasks 33 through 36.  The Gantt chart for this schedule is shown in Figure 11-8. 

 

Figure 11-8 NASA Resource-Loaded Schedule Example Gantt Chart 

The nominal critical path summary tasks include “Preliminary Design” (task 10), “Detailed 
Design” (task 13), “Development and Unit Testing” (task 21), “Integration and Testing” 
(task 26), “Delivery” (task 31), and “Risk Register” (schedule-related risks summarized by 
task 33). 

11.2.1 Schedule	Probability	Distribution	
The schedule distribution will be defined by the distributions of those tasks on the 
probabilistic critical paths (i.e., tasks 10 through 36).  We will define the probabilistic 
finish dates of these tasks using Equation 11-1. 

௜݄ݏ݅݊݅ܨ  ൌ ௜ݐݎܽݐܵ ൅  ௜ where݊݋݅ݐܽݎݑܦ
݅ is the task number 

 

11-1

11.2.1.1 Input Probability Distributions 
The ATP date is defined as a discrete date.  The remaining start and finish dates for all of 
the tasks are RVs because each of the task durations are defined as RVs with parameters 
defined in Table 11-8.  Two types of PDFs are shown in Table 11-8.  The first type of PDF 
is used to replace the nominal duration with a RV and are defined as uniform (ܷ), 
triangular (ܶ), normal (ܰ) or lognormal (ܮ) PDFs.  The second type of PDF is an 

ID Task Name Duration

1 JACS Analysis File 840 days
2 Milestone Summary 840 days
3 Project ATP 0 days
4 PDR 0 days
5 CDR 0 days
6 Rocket delivery 0 days
7 Project Support Costs hammock task 840 days
8 Support Start 0 days
9 Support Finish 0 days
10 Preliminary Design 150 days
11 Requirements definition and documentation 100 days
12 Preliminary design activities 50 days
13 Detailed Design 390 days
14 Initial detailed design 80 days
15 Design GN&C 160 days
16 Trade studies and analysis 60 days
17 Design pyrotechnics 100 days
18 Design propulsion system 160 days
19 Design structures and mechanisms 120 days
20 Finalize integrated design 90 days
21 Development and Unit Testing 150 days
22 Fabricate rocket Components 120 days
23 Fabricate and unit test structure (including  120 days
24 Fabricate and unit test engine 120 days
25 Develop and test flight software for GN&C 150 days
26 Integration and Testing 170 days
27 Integrate rocket components 40 days
28 Test frame, fuel system and engine 35 days
29 Test guidance system 60 days
30 Final integration and testing 70 days
31 Delivery 10 days
32 Delivery 10 days
33 Risk Register 400 days
34 Risk 1 ‐ TI ‐ Additional Purchase 0 days
35 Risk 2 ‐ Duration ‐ Additional Studies Required 0 days
36 Risk 3 ‐ TI and Duration ‐ Delay from Additional Sof 0 days

10/1

4/26

10/24

12/18

10/1

12/18

4/26

10/24

5/22

12/4

12/18

4/10

11/8

5/22

8/26 11/25 2/24 5/26 8/25 11/24 2/23 5/25 8/24 11/23 2/22 5/24 8/23 11/22 2/21 5/22 8/21 11/20
January 11 July 21 February 1 August 11 February 21 September 1 March 11 September 21



ANALYTIC METHOD FOR RISK ANALYSIS 

 
131 

 

uncertainty used to multiply the nominal duration by a PDF.  These are identified with the 
same PDF shape symbols as the first (e.g., ܷ, ܶ, ܰ, ܮ), but have a multiplication symbol 
next to the distribution’s parameters (e.g., ܷ ∗ ሺ90,110ሻ), which are represented as 
percentile values. 

All of the PDFs are uncorrelated with respect to each other except for tasks 23, 24 and 25 
(i.e., the development duration “DEVDUR” tasks).  These tasks are correlated with each 
other with	ߩ ൌ 0.75. 

Table 11-8 Duration Probability Distributions 

Task ID Task Description PDF 

7 Project Support Costs hammock task  

10 Preliminary Design  

11 Requirements definition and documentation ܶ ∗ ሺ95,100,110ሻ

12 Preliminary design activities ܶ ∗ ሺ95,100,110ሻ

13 Detailed Design  

14 Initial detailed design ܶ ∗ ሺ90,100,120ሻ

15 Design GN&C ܶ ∗ ሺ90,100,120ሻ

16 Trade studies and analysis ܶ ∗ ሺ90,100,120ሻ

17 Design pyrotechnics ܶ ∗ ሺ90,100,120ሻ

18 Design propulsion system ܶ ∗ ሺ90,100,120ሻ

19 Design structures and mechanisms ܶ ∗ ሺ90,100,120ሻ

20 Finalize integrated design ܶ ∗ ሺ90,100,120ሻ

21 Development and Unit Testing  

22 Fabricate Rocket Components  

23 Fabricate and unit test structure (including pyros) ܷ ∗ ሺ80,110ሻ; 
ܴܷܦܸܧܦሺߩ	 ൌ 0.75ሻ

24 Fabricate and unit test engine ܷ ∗ ሺ80,110ሻ;  
ܴܷܦܸܧܦሺߩ ൌ 0.75ሻ

25 Develop and test flight software for GN&C ܮ ∗ ሺ105,5ሻ;  
ܴܷܦܸܧܦሺߩ ൌ 0.75ሻ

26 Integration and Testing  

27 Integrate rocket components ܰ ∗ ሺ100,15ሻ 

28 Test frame, fuel system and engine ܶ ∗ ሺ80,100,130ሻ 

29 Test guidance system ܶ ∗ ሺ80,100,130ሻ 

30 Final integration and testing ܶሺ55,70,91ሻ 

31 Delivery  

32 Delivery ܰሺ10,3ሻ 

33 Risk Register  

34 Risk 1 - TI - Additional Purchase ܴሺ݌,  ሻሺ0.30,0ሻܦ

35 Risk 2 - Duration - Additional Studies Required ܴሺ݌, ,ሻሺ0.15ܦ ሺ15,25,40ሻሻܷܦ

36 Risk 3 - TI and Duration - Delay from Additional Software Purchase ܴሺ݌, ,ሻሺ0.3ܦ ܶሺ20,25,30ሻሻ 
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11.2.1.2 Calculating the Schedule Probability Distributions 
Using the discrete start date of 10/01/2012, the predecessor/successor relationships defined 
in Table 11-7 and the probabilistic durations of the tasks defined in Table 11-8, we can 
find the PDF of the finish dates of the resource-loaded example schedule. 

Only one obstacle lies in our way – the issue of whether to compute the statistics in 
working days or calendar days.  For simplicity, we will perform computations in working 
days - denoting durations, start dates and finish dates with an accent (e.g., ݂݄݅݊݅ݏ′௜) - then 
when specific dates are required, convert them to calendar days using the conversion factor 
in Equation 3-8. 

An example calculation of the duration statistics follows:  Since ݊݋݅ݐܽݎݑܦ′ଵଵ	is a PDF 
defined by	100݀ݓ ∗ ܶሺ95,100,110ሻ/100, ߤ஽௨௥௔௧௜௢௡ᇱభభ ൌ ஽௨௥௔௧௜௢௡ᇱభభߪ and ݀ݓ	101.67 ൌ

 using the definitions of the mean and standard deviation of a triangular PDF from ݀ݓ3.12
Section 16.1.1.  We repeat these calculations to compute the duration statistics (in wd) for 
all non-summary tasks shown in Table 11-9. 

The discrete risk duration calculations for tasks 34-36 rely on the technique described in 
Section 9.  There are two risks, ܴଶ	and	ܴଷ, with which we are currently concerned.  ܴଶ	is 
defined as a discrete risk, ܴଶሺ0.15,  ሺ15,25,40ሻሻ, with probability of occurrence  of 15%ܦ
and equiprobable consequences of 15, 25, and 40 wd, respectively.  The possible outcomes 
and associated probabilities of the states of ܴଶ are: 

ோమ′݊݋݅ݐܽݎݑܦ ൌ ൞

݀ݓ	0 , ݌ ൌ 0.85
݀ݓ	15 , ݌ ൌ 0.05
݀ݓ	25 , ݌ ൌ 0.05
݀ݓ	40 , ݌ ൌ 0.05

  

The moments of the duration of ܴଶ	are calculated using Equations 9-4 and 9-7. 

஽௨௥௔௧௜௢௡ᇱೃమߤ ൌ ݌ ቀ஽భା஽మା஽మ
ଷ

ቁ ൌ 0.15 ቀଵହାଶହାସ଴
ଷ

ቁ ൌ   and ,݀ݓ4

஽௨௥௔௧௜௢௡ᇱೃమߪ ൌ
ටሺ1 െ ሻ݌ ቀܦ଴ െ ஽௨௥௔௧௜௢௡ᇱೃమቁߤ

ଶ
൅ ௣

ଷ
∑ ቀܦ௜ െ ஽௨௥௔௧௜௢௡ᇱೃమቁߤ

ଶ
ଷ
௜ୀଵ 		

஽௨௥௔௧௜௢௡ᇱೃమߪ ൌ ටሺ1 െ 0.15ሻሺ0 െ 4ሻଶ ൅ ଴.ଵହ

ଷ
ሾሺ15 െ 4ሻଶ ൅ ሺ25 െ 4ሻଶ ൅ ሺ40 െ 4ሻଶሿ		

஽௨௥௔௧௜௢௡ᇱೃమߪ ൌ ඥሺ0.85ሻሺ16ሻ ൅ 0.05ሾሺ11ሻଶ ൅ ሺ21ሻଶ ൅ ሺ36ሻଶሿ ൌ 		.݀ݓ10.32

Task 36 (ܴଷሻ	is defined as a discrete risk,	ܴଷሺ0.30, ܶሺ20,25,30ሻሻ, with probability of 
occurrence  of 30% and a probabilistic impact, ܦ, defined by a triangular distribution with 
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parameters 20, 25 and 30 wd, respectively.  The mean and standard deviation of the 
impact’s triangular PDF,	ܦ ൌ ܶሺ20,25,30ሻ, are: 

஽ߤ ൌ
∑ ஽೔
య
೔సభ

ଷ
ൌ ଶ଴ାଶହାଷ଴

ଷ
ൌ 		and	,݀ݓ25

஽ߪ ൌ ට∑ ሺ஽೔ିఓವሻమ
య
೔సభ

ଵଶ
ൌ ටሺଶ଴ିଶହሻమାሺଶହିଶହሻమାሺଷ଴ିଶହሻమ

ଵଶ
ൌ  .݀ݓ2.04

The moments of the duration of ܴଷ	are calculated using Equations 9-4 and 9-7 

஽௨௥௔௧௜௢௡ᇱೃయߤ ൌ ஽ߤ݌ ൌ 0.30ሺ25ሻ ൌ   and ,݀ݓ7.50

஽௨௥௔௧௜௢௡ᇱೃయߪ ൌ ටሺ1 െ ଴ܦሻ൫݌ െ ஽௨௥௔௧௜௢௡ᇱೃయ൯ߤ
ଶ
൅ ݌ ቂߪ஽ଶ ൅ ∑ ൫ܦ௜ െ ஽௨௥௔௧௜௢௡ᇱೃయ൯ߤ

ଶଷ
௜ୀଵ ቃ  

஽௨௥௔௧௜௢௡ᇲೃయߪ ൌ

ඥሺ1 െ 0.30ሻሺ0 െ 7.5ሻଶ ൅ 0.3ሾሺ2.04ሻଶ ൅ ሺ20 െ 7.5ሻଶ ൅ ሺ25 െ 7.5ሻଶ ൅ ሺ30 െ 7.5ሻଶሿ ൌ
    .݀ݓ11.51

Table 11-9 Duration Probability Distributions in Workdays 

Task ID  Duration, wd  PDF, ࢏ࢿ ࢏ࢿࣆ ࢏ࢿ࣌  

11  100  ܶ ∗ ሺ95,100,110ሻ 101.67  3.12

12  50  ܶ ∗ ሺ95,100,110ሻ 50.83  1.56

14  80  ܶ ∗ ሺ90,100,120ሻ 82.67  4.99

15  160  ܶ ∗ ሺ90,100,120ሻ 165.33  9.98

16  60  ܶ ∗ ሺ90,100,120ሻ 62.00  3.74

17  100  ܶ ∗ ሺ90,100,120ሻ 103.33  6.24

18  160  ܶ ∗ ሺ90,100,120ሻ 165.33  9.98

19  120  ܶ ∗ ሺ90,100,120ሻ 124.00  7.48

20  90  ܶ ∗ ሺ90,100,120ሻ 93.00  5.61

23  120  ܷ ∗ ሺ80,110ሻ 114.00  10.39

24  120  ܷ ∗ ሺ80,110ሻ 114.00  10.39

25  150  ܮ ∗ ሺ105,5ሻ 157.5  7.50

27  40  ܰ ∗ ሺ100,15ሻ 40 6.00

28  35  ܶ ∗ ሺ80,100,130ሻ 36.17  3.60

29  60  ܶ ∗ ሺ80,100,130ሻ 62.00  6.16

30  70  ܶሺ55,70,91ሻ 72.00  7.38

32  10  ܰሺ10,3ሻ 10.00  3.00

34  0  ܴሺ݌, ሻሺ0.30,0ሻܦ 0.00 0.00

35  0  ܴሺ݌, ,ሻሺ0.15ܦ ሺ15,25,40ሻሻܷܦ 4.00 10.32

36  0  ܴሺ݌, ,ሻሺ0.3ܦ ܶሺ20,25,30ሻሻ 7.50 11.51
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In the next series of calculations, we compute the means and standard deviations of start 
dates (in wd) and finish dates (in wd) for these tasks. 

11.2.1.3 Preliminary Design 
The “Preliminary Design” summary task (task 10) consists to two lowest-level tasks (tasks 
11 and 12) that are arranged serially.  The computations for the task durations, start dates 
and finish dates are: 

ଵ଴ݐݎܽݐܵ ≡ ଵଵݐݎܽݐܵ ≡  = ATP date of 10/01/12	ଷݐݎܽݐܵ

ᇱଵ଴݄ݏ݅݊݅ܨ ≡  ᇱଵଶ by definition because task 10 is a summary task݄ݏ݅݊݅ܨ

ଵ଴′݊݋݅ݐܽݎݑܦ ൌ ᇱଵ଴݄ݏ݅݊݅ܨ െ ଵ଴ݐݎܽݐܵ ൌ ଵଵ′݊݋݅ݐܽݎݑܦ ൅  , because tasks 11	ଵଶ′݊݋݅ݐܽݎݑܦ
and 12 are serial tasks  

ଵଵ′݄ݏ݅݊݅ܨ ൌ ଵଵݐݎܽݐܵ ൅  ଵଵ, in wd′݊݋݅ݐܽݎݑܦ

From Table 11-9 we have: 

஽௨௥௔௧௜௢௡ᇱభభ	ߤ ൌ ஽௨௥௔௧௜௢௡ᇱభభ	ߪ and ݀ݓ101.67 ൌ  ݀ݓ3.12

஽௨௥௔௧௜௢௡ᇱభమߤ ൌ ஽௨௥௔௧௜௢௡ᇱభమߪ and	݀ݓ50.83 ൌ  .݀ݓ1.56

So,	݄ݏ݅݊݅ܨ′ଵଶ ൌ ଵଶݐݎܽݐܵ ൅ ଵଶ′݊݋݅ݐܽݎݑܦ ൌ ଵଵ݄ݏ݅݊݅ܨ ൅ ଵଶ′݊݋݅ݐܽݎݑܦ ൌ ଷݐݎܽݐܵ ൅
ଵଵ′݊݋݅ݐܽݎݑܦ ൅    ଵଶ, in wd′݊݋݅ݐܽݎݑܦ

So	݊݋݅ݐܽݎݑܦ′ଵ଴ ൌ ଵଵ′݊݋݅ݐܽݎݑܦ ൅   ଵଶ′݊݋݅ݐܽݎݑܦ

Therefore, 

஽௨௥௔௧௜௢௡ᇱభబ	ߤ ൌ ஽௨௥௔௧௜௢௡ᇱభభ	ߤ ൅ ஽௨௥௔௧௜௢௡ᇱభమ	ߤ ൌ  and ,݀ݓ152.50

஽௨௥௔௧௜௢௡ᇱభమ	ߪ ൌ ටߪ	஽௨௥௔௧௜௢௡ᇱభభ
ଶ ൅ ஽௨௥௔௧௜௢௡ᇱభమ	ߪ

ଶ ൌ   .݀ݓ3.49

Using these calculations, we get the results in Table 11-10.  

Table 11-10 Workday Results for Preliminary Design 

Task ID   ᇱ࢔࢕࢏࢚ࢇ࢛࢘ࡰࣆ ᇱ࢔࢕࢏࢚ࢇ࢛࢘ࡰ࣌ ࣆ ᇱ࢚࢘ࢇ࢚ࡿ ࣌ ᇱ࢚࢘ࢇ࢚ࡿ ࣆ ᇱࢎ࢙࢏࢔࢏ࡲ  ᇱࢎ࢙࢏࢔࢏ࡲ࣌

10  152.50  3.49 10/01/12 0 03/02/13  3.49 

11  101.67  3.12 10/01/12 0 01/10/13  3.12 

12  50.83  1.56 01/10/13 3.12 03/02/13  3.49 

 

11.2.1.4 Detailed Design 
The “Detailed Design” summary task (task 13) consists of seven lowest-level tasks (tasks 
14 through 20) arranged in a tree structure.  The nominal durations of tasks 14 through 20 
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have the same multiplicative triangular PDF (defined by ݊݋݅ݐܽݎݑܦ′ ∗ ܶሺ90,100,120ሻ), with 
mean of 1.033 and a standard deviation of 0.062.   

Task 14 has one predecessor, task 12, so its start and finish dates are defined as: 

ଵସ′ݐݎܽݐܵ ൌ ଵସ′݄ݏ݅݊݅ܨ ଵଶ , and′݄ݏ݅݊݅ܨ ൌ   ଵସ′݊݋݅ݐܽݎݑܦଵଶ൅′݄ݏ݅݊݅ܨ

From Table 11-9: 

஽௨௥௔௧௜௢௡ᇱభరߤ ൌ 80 ∗ 1.033 ൌ  and ,݀ݓ82.67

஽௨௥௔௧௜௢௡ᇱభరߪ ൌ 80 ∗ 0.062 ൌ  .݀ݓ4.99

Table 11-11 Workday Results for Detailed Design Task 14 

Task ID   ᇱ࢔࢕࢏࢚ࢇ࢛࢘ࡰࣆ ᇱ࢔࢕࢏࢚ࢇ࢛࢘ࡰ࣌ ࣆ ᇱ࢚࢘ࢇ࢚ࡿ ࣌ ᇱ࢚࢘ࢇ࢚ࡿ ࣆ ᇱࢎ࢙࢏࢔࢏ࡲ  ᇱࢎ࢙࢏࢔࢏ࡲ࣌

14  82.67  4.99 03/02/13 3.49 05/24/13  6.09 

 

Task 15 has a single predecessor, task 14, and we compute its start and finish dates as: 

ଵହ′ݐݎܽݐܵ ൌ ଵହ′݄ݏ݅݊݅ܨ ଵସ , and′݄ݏ݅݊݅ܨ ൌ   ଵହ′݊݋݅ݐܽݎݑܦଵହ൅′ݐݎܽݐܵ

From Table 11-9: 

஽௨௥௔௧௜௢௡ᇱభఱ	ߤ ൌ 160 ∗ 1.033 ൌ  and ,݀ݓ165.33

஽௨௥௔௧௜௢௡ᇱభఱ	ߪ  ൌ 160 ∗ 0.062 ൌ  .݀ݓ9.98

Task 16 also has a single predecessor (task 14), and its start and finish dates are: 

ଵ଺′ݐݎܽݐܵ ൌ ଵ଺′݄ݏ݅݊݅ܨ ଵସ , and′݄ݏ݅݊݅ܨ ൌ   ଵ଺′݊݋݅ݐܽݎݑܦଵସ൅′݄ݏ݅݊݅ܨ

From Table 11-9: 

஽௨௥௔௧௜௢௡ᇱభలߤ ൌ 60 ∗ 1.033 ൌ  and ,݀ݓ62.00

஽௨௥௔௧௜௢௡ᇱభలߪ ൌ 60 ∗ 0.062 ൌ  .݀ݓ3.74

Tasks 17 through 19 share risk ܴଶ	as a common predecessor, and ܴଶ’s predecessor is task 
16.  We must first compute the moments of ܴଶ	in order to calculate the start dates, 
durations and end dates of tasks 17 through 19. 

So, ܵݐݎܽݐ′ோమ ൌ ோଶ′݄ݏ݅݊݅ܨ ଵ଺ and′݄ݏ݅݊݅ܨ ൌ   ோమ and′݊݋݅ݐܽݎݑܦଵ଺൅′݄ݏ݅݊݅ܨ

From Table 11-9: 

஽௨௥௔௧௜௢௡ᇱೃమߤ ൌ ஽௨௥௔௧௜௢௡ᇱೃమ	ߪ and ݀ݓ4 ൌ  .݀ݓ10.32
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Since ܵݐݎܽݐ′ଵ଻ ൌ ଵ଼′ݐݎܽݐܵ ൌ ଵଽ′ݐݎܽݐܵ ൌ   ோమ, and′݄ݏ݅݊݅ܨ

ଵ଻′݄ݏ݅݊݅ܨ ൌ ଵ଼′݄ݏ݅݊݅ܨ , ଵ଻′݊݋݅ݐܽݎݑܦ2൅ܴ′݄ݏ݅݊݅ܨ ൌ  ଵ଼ , and′݊݋݅ݐܽݎݑܦோమ൅′݄ݏ݅݊݅ܨ

ଵଽ′݄ݏ݅݊݅ܨ ൌ  ଵ଼ , we need to compute the moments of the durations′݊݋݅ݐܽݎݑܦோమ൅′݄ݏ݅݊݅ܨ

of tasks 17 through 19 to compute their finish dates. 

From Table 11-9: 

஽௨௥௔௧௜௢௡ᇱభళ	ߤ ൌ ஽௨௥௔௧௜௢௡ᇱభళ	ߪ ,݀ݓ103.33 ൌ  ,݀ݓ6.24

஽௨௥௔௧௜௢௡ᇱభఴ	ߤ ൌ ஽௨௥௔௧௜௢௡ᇱభఴ	ߪ ,݀ݓ165.33 ൌ  ,݀ݓ9.98

஽௨௥௔௧௜௢௡ᇱభవ	ߤ ൌ ஽௨௥௔௧௜௢௡ᇱభవ	ߪ and ,݀ݓ124.00 ൌ  .݀ݓ7.48

The statistics for the durations, start dates and end dates for tasks 15 through 19 (including 
task 36) are shown in Table 11-12. 

Table 11-12 Workday Results for Detailed Design Tasks 15 – 19 and 35 

Task ID   ᇱ࢔࢕࢏࢚ࢇ࢛࢘ࡰࣆ ᇱ࢔࢕࢏࢚ࢇ࢛࢘ࡰ࣌ ࣆ ᇱ࢚࢘ࢇ࢚ࡿ ࣌ ᇱ࢚࢘ࢇ࢚ࡿ ࣆ ᇱࢎ࢙࢏࢔࢏ࡲ  ᇱࢎ࢙࢏࢔࢏ࡲ࣌

15  165.33  9.98 05/24/13 6.09 11/05/13  11.69 

16  62.00  3.74 05/24/13 6.09 07/25/13  7.14 

35 (ܴଶ)  4.00  10.32 07/25/13 7.14 07/29/13  12.55 

17  103.33  6.24 07/29/13 12.55 11/09/13  14.02 

18  165.33  9.98 07/29/13 12.55 01/10/14  16.03 

19  124.00  7.48 07/29/13 12.55 11/30/13  14.61 
 

Task 20 has four predecessor tasks, so its start date is defined by the maximum finish date 
of its predecessors (i.e., tasks 15, 17, 18 and 19).  This is expressed as: 

ଶ଴′ݐݎܽݐܵ ൌ ,ଵହ′݄ݏ݅݊݅ܨሺݔܽܯ ,ଵ଻′݄ݏ݅݊݅ܨ ,ଵ଼′݄ݏ݅݊݅ܨ   ଵଽሻ′݄ݏ݅݊݅ܨ

Nearly all of the duration PDFs used in this example schedule are right skewed, so a 
lognormal distribution is assumed for all of the start and finish date PDFs.  Since the 
distributions of the finish dates of these tasks approximate lognormal distributions, the 
equations for the moments of the maximum of lognormal distributions (Equations 10-8 
through 10-10) are used to find the finish date statistics for tasks 15, 17, 18 and 19 and thus 
the start date statistics for task 20.   The latest, or maximum, finish date of the four tasks 
can be calculated in pairs, so three comparisons will be made, and the following three 
intermediate distributions will be formed:	ܣ ൌ ܤ	,ሺ18,19ሻݔܽ݉ ൌ ,ሺ17ݔܽ݉  ሻ, andܣ
ܥ ൌ ,ሺ15ݔܽ݉  .ሻܤ

We can calculate the mean of the maximum of two lognormal distributions using Equation 
10-8, which is: 
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 ሾܺሿ ൌ ߔଵߤ ቂ
ሺ௉భି௉మሻା൫ொభ

మିఘொభொమ൯

ఏ
ቃ ൅ ߔଶߤ ቂ

ሺ௉మି௉భሻା൫ொమ
మିఘொభொమ൯

ఏ
ቃ ,  

and from Equation 10-9, which is: 

ሾܺଶሿܧ  ൌ ሺߪଵ
ଶ ൅ ଵߤ

ଶሻߔ ቀ௉భି௉మ
ఏ

ቁ ൅ ሺߪଶ
ଶ ൅ ଶߤ

ଶሻߔ ቀ௉మି௉భ
ఏ

ቁ ,  

where ൌ ඥܳଵ
ଶ ൅ ܳଶ

ଶ െ ߩ ଵܳଶ , andܳߩ2 ൌ ଵ

ொభொమ
݈݊ ቈ1 ൅ ଵ,ଶߩ ቆටൣ݁ொభ

మ െ 1൧ൣ݁ொమమ െ 1൧ቇ቉ 

These computations require knowledge of the statistics of the finish dates of pairs of 
tasks:	ߤଵ, ,ଶߤ	 ,ଵߪ ,ଶߪ	 ଵܲ, ଶܲ, ܳଵ, ܳଶ, ,ߠ  Table 11-13 provides the statistics  .ߩ	and	ଵ,ଶ,ߩ

used in the calculation of the maximum finish dates of tasks 15, 17, 18 and 19.  

The finish dates of tasks 15 through 19 are correlated due to common predecessor-
successor relationships.  Using Equation 8-8, we can determine the pairwise correlation 
between these tasks or the maximums of pairs of tasks.  

Table 11-13 Statistics for Maximum Finish Dates of Tasks 15, 17, 18 and 19 

Statistic  A=max(18,19)  B=max(17,A)  C=max(15,B) 

ଵ 01/10/14ߤ	 11/09/13 11/05/13 

ଶ 11/30/13ߤ	 01/10/14 01/10/14 

ଵ 16.03ߪ 14.02 11.69 

ଶ 14.61ߪ	 16.03 16.03 

ଵܲ 10.6370 10.6356 10.6355 

ଶܲ 10.6361 10.6370 10.6370 

ܳଵ 0.000385 0.000337 0.000281 

ܳଶ 0.000351 0.000385 0.000385 

ଵ,ଶ 0.67236ߩ 0.70115 0.14383 

0.67236 ߩ 0.70115 0.14383 

୫ୟ୶ 01/10/14ߤ	 01/10/14 01/10/14 

୫ୟ୶ 16.03ߪ 16.03 16.03 

*Note due to the small values of	ܳ୧, that	ߩଵ,ଶ and ߩ are identical 

Tasks 18 and 19 share a common predecessor, the risk task (task 35, or	ܴଶ), so their 
correlation is: 

ଵ଼,ଵଽߩ ൌ
ఙಷ೔೙೔ೞ೓ᇲೃమ

మ

ఙಷ೔೙೔ೞ೓ᇲభఴఙಷ೔೙೔ೞ೓ᇲభవ
ൌ ሺଵଶ.ହହሻమ

ሺଵ଺.଴ଷሻሺଵସ.଺ଵሻ
ൌ 0.67236  

Task 17 shares ܴଶ as a common predecessor with the maximum of task A (the maximum 
of tasks 18 and 19), so the correlation between task 17 and task A is: 
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ଵ଻,஺ߩ ൌ
ఙಷ೔೙೔ೞ೓ᇲೃమ

మ

ఙಷ೔೙೔ೞ೓ᇲభళఙಷ೔೙೔ೞ೓ᇲಲ
ൌ ሺଵଶ.ହହሻమ

ሺଵସ.଴ଶሻሺଵ଺.଴ଷሻ
ൌ 0.70104  

Finally, task 15 shares task 14 as a common predecessor with task B (the maximum of 
tasks 17 and A), so task 15’s correlation to task B is: 

ଵହ,஻ߩ ൌ
ఙಷ೔೙೔ೞ೓ᇲభర

మ

ఙಷ೔೙೔ೞ೓ᇲభఱఙಷ೔೙೔ೞ೓ᇲಳ
మ ൌ

ሺ଺.଴ଽሻమ

ሺଵଵ.଺ଽሻሺଵ଺.଴ଷሻ
ൌ 0.19766  

Task 20’s predecessor is task C, so its finish date is defined as: 

ଶ଴′݄ݏ݅݊݅ܨ ൌ   ଶ଴′݊݋݅ݐܽݎݑܦ஼൅′݄ݏ݅݊݅ܨ

From Table 11-9: 

஽௨௥௔௧௜௢௡ᇱభర	ߤ ൌ 90 ∗ 1.033 ൌ  and ,݀ݓ93.00

஽௨௥௔௧௜௢௡ᇱమబ	ߪ  ൌ 90 ∗ 0.062 ൌ  .݀ݓ5.61

The start date, finish date and duration results for task 20 are shown in Table 11-14. 

Table 11-14 Workday Results for Detailed Design Task 20 

Task ID   ′࢔࢕࢏࢚ࢇ࢛࢘ࡰࣆ ′࢔࢕࢏࢚ࢇ࢛࢘ࡰ࣌ ࣆ ′࢚࢘ࢇ࢚ࡿ ࣌ ′࢚࢘ࢇ࢚ࡿ ࣆ ′ࢎ࢙࢏࢔࢏ࡲ  ′ࢎ࢙࢏࢔࢏ࡲ࣌

20  93.00  5.61 01/10/14 16.03 04/13/14  16.99 

 

11.2.1.5 Development and Unit Testing 
The “Development and Unit Testing” summary task (task 21) consists of a summary task 
(task 22) and three lowest-level tasks (tasks 23 through 25) that are arranged in a parallel 
structure.  Each of the tasks has a common predecessor, task 20 and the durations of tasks 
23, 24 and 25 are correlated to each other with	ߩ ൌ 0.75.  From Table 11-9: 

஽௨௥௔௧௜௢௡ᇱమయߤ ൌ ஽௨௥௔௧௜௢௡ᇱమయߪ ,݀ݓ114.00 ൌ  ,݀ݓ10.39

஽௨௥௔௧௜௢௡ᇱమరߤ ൌ ஽௨௥௔௧௜௢௡ᇱమరߪ ,݀ݓ114.00 ൌ  ,݀ݓ10.39

஽௨௥௔௧௜௢௡ᇱమఱߤ ൌ ஽௨௥௔௧௜௢௡ᇱమఱߪ and ,݀ݓ157.50 ൌ  .݀ݓ7.50

Table 11-15 shows the duration, start and finish date statistics for the lowest-level tasks for 
“Development and Unit Testing”. 

Table 11-15 Workday Results for Development and Unit Testing Tasks 

Task ID   ᇱ࢔࢕࢏࢚ࢇ࢛࢘ࡰࣆ ᇱ࢔࢕࢏࢚ࢇ࢛࢘ࡰ࣌ ࣆ ᇱ࢚࢘ࢇ࢚ࡿ ࣌ ᇱ࢚࢘ࢇ࢚ࡿ ࣆ ᇱࢎ࢙࢏࢔࢏ࡲ  ᇱࢎ࢙࢏࢔࢏ࡲ࣌

23  114.00  10.39 04/13/14 16.98 08/05/14  19.91 

24  114.00  10.39 04/13/14 16.98 08/05/14  19.91 

25  157.5  7.50 04/13/14 16.98 09/18/14  18.57 
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The fact that the durations of these tasks are correlated does not matter at this particular 
point since they are not serially arranged and merge to form a predecessor in a different 
summary task.  This will become important when computing the maximum finish dates of 
these tasks and their respective CIs. 

11.2.1.6 Integration and Testing 
The “Integration and Testing” summary task (task 26) consists of four lowest-level tasks 
(27 through 30) arranged in a tree structure.   

Task 27 has three predecessors, tasks 23, 24 and 34, and the last is risk ܴଵ.  Since ܴଵ	has 
zero duration, task 27 actually has only two predecessors, tasks 23 and 24.  This means its 
start date is defined as maximum of the finish of tasks 23 and 24.  Both tasks 23 and 24 
have the same finish statistics but their durations are correlated with	ߩ ൌ 0.75. 

ଶ଻′ݐݎܽݐܵ ൌ ,ଶଷ′݄ݏ݅݊݅ܨሺݔܽܯ   ଶସሻ′݄ݏ݅݊݅ܨ

ଶ଻′݄ݏ݅݊݅ܨ ൌ ଶ଻′ݐݎܽݐܵ ൅   ଶ଻′݊݋݅ݐܽݎݑܦ

From Table 11-9, ߤ஽௨௥௔௧௜௢௡ᇱమళ ൌ ஽௨௥௔௧௜௢௡ᇱమళߪ and	݀ݓ40.00 ൌ  .݀ݓ6.00

Since the maximum of ݄ݏ݅݊݅ܨ′ଶଷ	and ݄ݏ݅݊݅ܨ′ଶସ	depends on the correlation between the 
durations of tasks 23 and 24 as well as the functional correlation due to their common 
predecessor (task 2), we will use Equation 8-8 to determine ߩிᇱమయ,ிᇱమరthen we can calculate 

the maximum finish date statistics using Equations 10-8 through 10-10. 

24ܨ,23′ܨߩ ൌ
20′ܨߪ

2 ൅ 24′ܦߪ23′ܦߪ24′ܦ,23′ܦߩ
24′ܨߪ23′ܨߪ

ൌ
ሺ16.99ሻ2 ൅ ሺ0.75ሻሺ10.39ሻሺ10.39ሻ

ሺ19.91ሻሺ19.91ሻ
ൌ 0.9319 

The maximum finish date statistics are: 

ሺி௜௡௜௦௛ᇱమయ,ி௜௡௜௦௛ᇱమరሻߤ ൌ 08/08/14, and ߪሺி௜௡௜௦௛ᇱమయ,ி௜௡௜௦௛ᇱమరሻ ൌ  .݀ݓ19.70

Task 27’s statistics are provided in Table 11-16. 

Table 11-16 Workday Results for Integration and Testing Task 27 

Task ID   ᇱ࢔࢕࢏࢚ࢇ࢛࢘ࡰࣆ ᇱ࢔࢕࢏࢚ࢇ࢛࢘ࡰ࣌ ࣆ ᇱ࢚࢘ࢇ࢚ࡿ ࣌ ᇱ࢚࢘ࢇ࢚ࡿ ࣆ ᇱࢎ࢙࢏࢔࢏ࡲ  ᇱࢎ࢙࢏࢔࢏ࡲ࣌

27  40  6.00 08/08/14 19.70 09/17/14  20.59 

 

Task 28 has a single predecessor (task 27), so	݄ݏ݅݊݅ܨ′ଶ଻ ൌ  :ଶ଼.  From Table 11-9′ݐݎܽݐܵ

஽௨௥௔௧௜௢௡ᇱమఴߤ ൌ ஽௨௥௔௧௜௢௡ᇱమఴߪ and	݀ݓ36.17 ൌ  .݀ݓ3.60

Task 28’s statistics are provided in Table 11-17. 
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Table 11-17 Workday Results for Integration and Testing Task 28 

Task ID   ᇱ࢔࢕࢏࢚ࢇ࢛࢘ࡰࣆ ᇱ࢔࢕࢏࢚ࢇ࢛࢘ࡰ࣌ ࣆ ᇱ࢚࢘ࢇ࢚ࡿ ࣌ ᇱ࢚࢘ࢇ࢚ࡿ ࣆ ᇱࢎ࢙࢏࢔࢏ࡲ  ᇱࢎ࢙࢏࢔࢏ࡲ࣌

28  36.17  3.60 09/17/14 20.59 10/23/14  20.90 

 

The “Development and Unit Testing” task (task 29), has two predecessors, tasks 27 and 36 
(the latter is risk ܴଷ).  Tasks 27 and 36 branch from task 20 with multiple intermediate 
tasks, but since they share task 20 as a common predecessor, their finish dates will be 
functionally correlated. Before we can compute task 29’s start date, we must compute the 
finish date statistics for task 36.  From Table 11-9: 

஽௨௥௔௧௜௢௡ᇱ౎య	ߤ ൌ ஽௨௥௔௧௜௢௡ᇱ౎య	ߪ and ݀ݓ7.50 ൌ  .	݀ݓ11.51

The predecessor-successor and start-finish relationships (ܵݐݎܽݐ′ோଷ ൌ  and	ଶହ′݄ݏ݅݊݅ܨ
ோଷ′݄ݏ݅݊݅ܨ ൌ  ோଷ) allow us to compute the schedule statistics for task′݊݋݅ݐܽݎݑܦோଷ൅′ݐݎܽݐܵ
36 (ܴଷ) in Table 11-18. 

Table 11-18 Workday Results for Risk R3 (Task 36) 

Task ID   ᇱ࢔࢕࢏࢚ࢇ࢛࢘ࡰࣆ ᇱ࢔࢕࢏࢚ࢇ࢛࢘ࡰ࣌ ࣆ ᇱ࢚࢘ࢇ࢚ࡿ ࣌ ᇱ࢚࢘ࢇ࢚ࡿ ࣆ ᇱࢎ࢙࢏࢔࢏ࡲ  ᇱࢎ࢙࢏࢔࢏ࡲ࣌

36  7.50  11.51 09/18/14 18.57 09/25/14  21.85 

 

Since tasks 27 and 36 share a common predecessor (task 20), they are functionally 
correlated, so we will use the now familiar Equation 8-8 to determine	ߩிᇱమళ,ிᇲయల.  Since 

஽మళ,஽యలߩ ൌ 0.75,	we have: 

ிᇱమళ,ிᇱయలߩ ൌ
ிᇱమబߪ

ଶ ൅ ஽ᇱయలߪ஽ᇱమళߪ஽ᇱమళ,஽ᇱయలߩ
ிᇱయలߪிᇱమళߪ

ൌ
ሺ16.99ሻଶ ൅ ሺ0.75ሻሺ6.00ሻሺ11.51ሻ

ሺ20.59ሻሺ21.85ሻ
ൌ 0.7565 

The maximum finish date statistics using Equations 10-8 through 10-10 are 

ሺி௜௡௜௦௛ᇱమళ,ி௜௡௜௦௛ᇱయలሻߤ ൌ 09/28/14, and ߪሺி௜௡௜௦௛ᇱమయ,ி௜௡௜௦௛ᇱమరሻ ൌ  .݀ݓ20.78

From Table 11-9: 

஽௨௥௔௧௜௢௡ᇱమవ	ߤ ൌ ஽௨௥௔௧௜௢௡ᇱమవ	ߪ and 	݀ݓ62.00 ൌ  .݀ݓ6.16

Task 29’s statistics are provided in Table 11-19. 

Table 11-19 Workday Results for Integration and Testing Task 29 

Task ID   ᇱ࢔࢕࢏࢚ࢇ࢛࢘ࡰࣆ ᇱ࢔࢕࢏࢚ࢇ࢛࢘ࡰ࣌ ࣆ ᇱ࢚࢘ࢇ࢚ࡿ ࣌ ᇱ࢚࢘ࢇ࢚ࡿ ࣆ ᇱࢎ࢙࢏࢔࢏ࡲ  ᇱࢎ࢙࢏࢔࢏ࡲ࣌

29  62.00  6.16 09/28/14 20.78 11/29/14  21.68 
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The last “Integration and Testing” task is task 30.  It has two predecessors, tasks 28 and 29.  
Since tasks 28 and 29 share task 27 as a common predecessor, they will be functionally 
correlated, and we will use Equation 8-8 to calculate it.  We will assume	ߩ஽మఴ,஽మవ ൌ 0. 

஽ᇱమఴ,஽ᇱమవߩ ൌ
ிᇱమళߪ

ଶ

ிᇱమఴߪிᇱమఴߪ
ൌ

ሺ20.59ሻଶ

ሺ20.90ሻሺ21.68ሻ
ൌ 0.9356 

Equations 10-8 through 10-10 provide the following results 

ሺி௜௡௜௦௛ᇱమఴ,ி௜௡௜௦௛ᇱమవሻߤ ൌ 11/30/14, and ߪሺி௜௡௜௦௛ᇱమఴ,ி௜௡௜௦௛ᇱమవሻ ൌ  .݀ݓ21.68

From Table 11-9: 

஽௨௥௔௧௜௢௡ᇱయబ	ߤ ൌ ஽௨௥௔௧௜௢௡ᇱయబ	ߪ and	݀ݓ72.00 ൌ  .݀ݓ7.38

Table 11-20 summarizes the duration, start and finish date statistics for the lowest-level 
tasks for “Integration and Testing”. 

Table 11-20 Workday Results for Integration and Testing Tasks 

Task ID   ᇱ࢔࢕࢏࢚ࢇ࢛࢘ࡰࣆ ᇱ࢔࢕࢏࢚ࢇ࢛࢘ࡰ࣌ ࣆ ᇱ࢚࢘ࢇ࢚ࡿ ࣌ ᇱ࢚࢘ࢇ࢚ࡿ ࣆ ᇱࢎ࢙࢏࢔࢏ࡲ  ᇱࢎ࢙࢏࢔࢏ࡲ࣌

27  40  6.00 08/08/14 19.70 09/17/14  20.59 

28  36.17  3.60 09/17/14 20.59 10/23/14  20.90 

29  62.00  6.16 09/28/14 20.78 11/29/14  21.68 

30  72.00  7.38 11/30/14 21.68 02/10/15  22.90 

 

11.2.1.7 Delivery 
The “Delivery” summary task (task 31) consists of a single lowest-level task (task 32).  
Task 32 has a single predecessor (task 30). From Table 11-9: 

஽௨௥௔௧௜௢௡ᇱయమ	ߤ ൌ ஽௨௥௔௧௜௢௡ᇱయమ	ߪ and ,݀ݓ10.00 ൌ  .݀ݓ3.00

The statistics for task 32 are shown in Table 11-21. 

Table 11-21 Workday Results for Delivery Task 32 

Task ID   ᇱ࢔࢕࢏࢚ࢇ࢛࢘ࡰࣆ ᇱ࢔࢕࢏࢚ࢇ࢛࢘ࡰ࣌ ࣆ ᇱ࢚࢘ࢇ࢚ࡿ ࣌ ᇱ࢚࢘ࢇ࢚ࡿ ࣆ ᇱࢎ࢙࢏࢔࢏ࡲ  ᇱࢎ࢙࢏࢔࢏ࡲ࣌

32  10.00  3.00 02/10/15 22.90 02/20/15  23.10 

 

11.2.1.8 Criticality Index 
As described in Section 3.3.3, the CI is the probability that a particular task is on the 
critical path.  Since tasks 30 and 32 are serial and always define the finish date, they are 
always on the critical path so their CIs are 100%.  Tasks 11, 12 and 14 are serial tasks and 
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are by definition on the critical path so their CIs are 100% as well.  The tasks succeeding 
task 14 create a branch in the schedule network, so we must evaluate their CI up to the 
point of the start of task 20. These branches are: 

1) Task 15 
2) Tasks 16, 35 and 17 
3) Tasks 16, 35 and 18 
4) Tasks 16, 35 and 19 

 
The expression for the duration between task 15 and task 19 is:  

ሾଵହ,ଵଽሿܦ ൌ maxሺܦଵହ, ଵ଺ܦ ൅ ଷହܦ ൅ ,ଵ଻ܦ ଵ଺ܦ ൅ ଷହܦ ൅ ,ଵ଼ܦ ଵ଺ܦ ൅ ଷହܦ ൅   ଵଽሻܦ

The CIs of these tasks, using Equation 3-9, are: 

ଵହܫܥ ൌ ܲሺܨ′ଵହ ൐ 	  ௠௔௫ሺଵ଻,ଵ଼,ଵଽሻሻ′ܨ

ଵ଺ܫܥ ൌ 1 െ 	  ଵହܫܥ
ଷହܫܥ ൌ 1 െ 	 ଵହܫܥ
ଵ଻ܫܥ ൌ ܲሺܨ′ଵ଻ ൐ 	 ௠௔௫ሺଵ଼,ଵଽሻሻ′ܨ

ଵ଼ܫܥ ൌ ܲሺܨ′ଵ଼ ൐ 	  ௠௔௫ሺଵ଻,ଵଽሻሻ′ܨ

ଵଽܫܥ ൌ ܲሺܨ′ଵଽ ൐   ௠௔௫ሺଵ଻,ଵ଼ሻሻ′ܨ

From Section 3.3.3, we can calculate ܫܥଵହ	using the moments of the difference between the 
PDFs of ܨᇱ୫ୟ୶ሺଵ଻,ଵ଼,ଵଽሻ and ܨᇱଵହ then finding the integral of the PDF of the difference 

from–∞ to 0. 

ଵହܫܥ ൌ 	ܲ൫ܨᇱଵହ ൐ ᇱ୫ୟ୶ሺଵ଻,ଵ଼,ଵଽሻ൯ܨ ൌ ܲሺܨᇱ୫ୟ୶ሺଵ଻,ଵ଼,ଵଽሻ െ ᇱଵହܨ ൏ 0ሻ  

ிᇲౣ౗౮ሺభళ,భఴ,భవሻߤ
ൌ 01/10/14, and ߪிᇲౣ౗౮ሺభళ,భఴ,భవሻ

ൌ  .from Table 11-13	݀ݓ16.03

ிᇲభఱߤ ൌ 11/05/13, and ߪிᇲభఱ ൌ  from Table 11-12 ݀ݓ	11.69

ߩ ൌ 0.14383 from Table 11-13. 

The moments of the difference of the PDFs are: 

ߤߜ ൌ ிᇲౣ౗౮ሺభళ,భఴ,భవሻߤ
െ ிᇲభఱߤ ൌ   and ,݀ݓ66

ߪߜ ൌ ටߪிᇲౣ౗౮ሺభళ,భఴ,భవሻ
ଶ ൅ ிᇲభఱߪ

ଶ െ ிᇲౣ౗౮ሺభళ,భఴ,భవሻߪߩ2
ிᇲభఱߪ ൌ   .݀ݓ17.875

Since ߤߜ is positive and ߪிᇲభఱ ൏ ிᇲౣ౗౮ሺభళ,భఴ,భవሻߪ
, we expect the difference distribution to be 

right skewed.  Using the knowledge that ߤߜ ൐  we can expect all but a negligible ߪߜ3
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amount of area of the distribution lies to the right of the origin, so ܫܥଵହ ൌ 	0.  Since this is 
the case, ܫܥଵ଺ ൌ 1, and	ܫܥଷହ ൌ 1	since it is a direct successor to task 16. 

ଵ଻ܫܥ ൌ ܲ൫ܨᇱଵ଻ ൐ ᇱ୫ୟ୶ሺଵ଼,ଵଽሻ൯ܨ ൌ ܲሺܨᇱ୫ୟ୶ሺଵ଼,ଵଽሻ െ ᇱଵ଻ܨ ൏ 0ሻ 	

ிᇲౣ౗౮ሺభఴ,భవሻߤ
ൌ 01/10/14, and ߪிᇲౣ౗౮ሺభఴ,భవሻ

ൌ  .from Table 11-13	݀ݓ16.03

ிᇲభళߤ ൌ 11/09/13, and ߪிᇲభళ ൌ  from Table 11-12 ݀ݓ14.02

ߩ ൌ 0.70115	from Table 11-13. 

The moments of the difference of the PDFs are: 

ߤߜ ൌ ிᇲౣ౗౮ሺభఴ,భవሻߤ
െ ிᇲభఱߤ ൌ   and ,.݀ݓ	62

ߪߜ ൌ ටߪிᇲౣ౗౮ሺభఴ,భవሻ
ଶ ൅ ிᇲభఱߪ

ଶ െ ிᇲౣ౗౮ሺభఴ,భవሻߪߩ2
ிᇲభఱߪ ൌ   .݀ݓ	11.763

Again, ߤߜ is positive, and ߪிᇲభళ ൏ ிᇲౣ౗౮ሺభళ,భఴ,భవሻߪ
, so we expect the difference distribution 

to be right skewed.  ߤߜ ൐ ଵ଻ܫܥ	in this case, so we can again expect ,ߪߜ3 ൌ 	0. 

ଵ଼ܫܥ ൌ ܲ൫ܨᇱଵ଼ ൐ ᇱ୫ୟ୶ሺଵ଻,ଵଽሻ൯ܨ ൌ ܲሺܨᇱ୫ୟ୶ሺଵ଻,ଵଽሻ െ ᇱଵ଼ܨ ൏ 0ሻ   

To find ܫܥଵ଼	we require values for the following parameters: ߤிᇲౣ౗౮ሺభళ,భవሻ
ிᇲౣ౗౮ሺభఴ,భవሻߪ	,

, 

 .(ᇱଵ଼ܨ ᇱ୫ୟ୶ሺଵ଻,ଵଽሻ andܨ which is the correlation between) ߩ ிᇲభఴ, andߪ ,ிᇲభఴߤ

We again use Equation 10-8 and Equation 10-9 to calculate the mean of ܨᇱ୫ୟ୶ሺଵ଻,ଵଽሻ which 

result in: 

ிᇲౣ౗౮ሺభళ,భవሻߤ
ൌ 11/30/13, and ߪிᇲౣ౗౮ሺభఴ,భవሻ

ൌ  	݀ݓ	14.56

ிᇲభఴߤ ൌ 01/10/14, and ߪிᇲభఴ ൌ  .from Table 11-12 ݀ݓ16.03

The correlation coefficient is calculated using the knowledge that these distributions rely 
on a common finish date for task 20 whose standard deviation is:  

ிᇲభఴߪ ൌ  from Table 11-12 ݀ݓ	16.99

So, ߩଵ଻,ଵଽ ൌ
ఙಷ೔೙೔ೞ೓ᇲమబ

మ

ఙಷᇲౣ౗౮ሺభళ,భవሻ
ఙಷᇲభఴ

ൌ ሺଵ଺.ଽଽሻమ

ሺଵସ.ହ଺ሻሺଵ଺.଴ଷሻ
ൌ 0.70115  

 The moments of the difference of the PDFs are: 

ߤߜ ൌ ிᇲౣ౗౮ሺభళ,భవሻߤ
െ ிᇲభఴߤ ൌ െ41.27݀ݓ, and  

ߪߜ ൌ ටߪிᇲౣ౗౮ሺభళ,భవሻ
ଶ ൅ ிᇲభఴߪ

ଶ െ ிᇲౣ౗౮ሺభళ,భవሻߪߩ2
ிᇲభఴߪ ൌ   .݀ݓ	12.411

The area of this distribution is all less than zero, so	ܫܥଵ଼ ൌ 1.0. 
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Task 20 is a serial task and has a CI of 100%, but it has a complex set of branches 
succeeding it.  The equivalent duration of the tasks between tasks 20 and 30 is the 
difference between the start date of task 30 and the finish date of task 20.  This duration 
represents the maximum duration of tasks 23 through 29, ܦሾଶଷ,ଶଽሿ, which is equal to:  

ሾଶଷ,ଶଽሿܦ ൌ ,ଶଷ′ܦሺݔሾ݉ܽݔሼ݉ܽݔܽ݉ ଶସሻ′ܦ ൅ ,ଶ଻′ܦ ଶହ′ܦ ൅ ଷ଺ሿ′ܦ ൅ ,ଶଷ′ܦሺݔܽ݉,ଶଽ′ܦ ଶସሻ′ܦ ൅

ଶ଻′ܦ ൅   ଶ଼ሽ′ܦ

Tasks 28 and 29 define the start of task 30, so  

ଶ଼ܫܥ ൌ ܲሺܨ′ଶ଼ ൐ 	ଶଽሻ, and′ܨ
ଶଽܫܥ ൌ 1 െ 	 .ଶ଼ܫܥ

ଶ଼ܫܥ ൌ ܲሺܨᇱଶ଼ ൐ ᇱଶଽሻܨ ൌ ܲሺܨᇱଶ଼ െ ᇱଶ଻ܨ ൏ 0ሻ, which results in: 	

28′ܨߤ ൌ 10/23/14, and ߪிᇲమఴ ൌ  from Table 11-20	݀ݓ20.89

ிᇲమవߤ ൌ 11/29/14, and ߪிᇲమవ ൌ  from Table 11-20 ݀ݓ21.68

Since tasks 28 and 29 share task 20 as a common predecessor, the correlation between their 
finish dates is defined as:  

ଶ଼,ଶଽߩ ൌ
ఙಷ೔೙೔ೞ೓ᇲమబ

మ

ఙಷᇲమఴఙಷᇲమవ
ൌ ሺଵ଺.ଽଽሻమ

ሺଶ଴.଺ଽሻሺଶଵ.଺଼ሻ
ൌ 0.63640  

The moments of the difference between the two PDFs are: 
ߤߜ ൌ ிᇲమవߤ െ ிᇲమఴߤ ൌ   and ,݀ݓ36.6

ߪߜ ൌ ටߪிᇲమవ
ଶ ൅ ிᇲమఴߪ

ଶ െ ிᇲమఴߪிᇲమవߪߩ2 ൌ  .݀ݓ18.164

Since ߩଶ଼,ଶଽ	is not large enough to model the difference between these PDFs as a normal 

distribution, we will treat it as a lognormal distribution.  The lognormal parameters ܲ and 
ܳ for the difference are ܲ ൌ 3.4915 and	ܳ ൌ 0.4687.  Substituting ܲ and ܳ into the 
standard normal distribution and evaluating the integral of the difference of the PDFs from 
െ∞	to 0	we get zero, so	ܫܥଶ଼ ൌ 0 .  It becomes clear that task 29 is on the critical path with 
ଶଽܫܥ ൌ 1	and the expression for the duration from task 23 to task 29 reduces to: 

ሾଶଷ,ଶଽሿܦ ൌ ,ଶଷܦሺݔሾ݉ܽݔܽ݉ ଶସሻܦ ൅ ,ଶ଻ܦ ଶହܦ ൅ ଷ଺ሿܦ ൅   ଶଽܦ

This expression shows we must calculate	ܫܥଷ଺	, a discrete risk.  ܴଷ is defined as ܴሺ݌, ሻܦ ൌ
൫0.3, ܶሺ20,25,30ሻ൯wd, meaning there is a 30% probability that there will be an additional 

duration defined by ܶሺ20,25,30ሻwd. 

The duration statistics for task 36 are: 

஽ᇲయలߤ ൌ ൜
25.00 , ݂݅	ܴଷ	, ݌ ൌ 0.3
0.00 , ݂݅	ܴଷതതത	, 1 െ ݌ ൌ 0.7

 , and ߪ஽ᇲయల ൌ ൜
2.04 , ݂݅	ܴଷ	, ݌ ൌ 0.3
0.00 , ݂݅	ܴଷതതത	, 1 െ ݌ ൌ 0.7
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The finish date statistics for task 36 are:  

ிᇲయలߤ ൌ ൜
10/13/14 , ݂݅	ܴଷ	, ݌ ൌ 0.3
09/18/14 , ݂݅	ܴଷതതത	, 1 െ ݌ ൌ 0.7

 , and ߪிᇲయల ൌ ൜
18.67 , ݂݅	ܴଷ	, ݌ ൌ 0.3
18.56 , ݂݅	ܴଷതതത	, 1 െ ݌ ൌ 0.7

  

ଷ଺ܫܥ ൌ ܲሺܨ′ଷ଺ ൐ ଶ଻ሻ′ܨ ൌ ܲሺܨᇱଶ଻ െ ᇱଷ଺ܨ ൏ 0ሻ 	

ிᇲమళߤ ൌ 09/17/14, and ߪிᇲమళ ൌ  from Table 11-20	݀ݓ20.59

Tasks 27 and 36 share task 20 as a common predecessor, however 

ଶ଻′݄ݏ݅݊݅ܨ ൌ ଶ଴′݄ݏ݅݊݅ܨ ൅ ,ଶଷ′ܦሺݔܽܯ ଶସሻ′ܦ ൅   ,ଶ଻′ܦ

ᇱோଷ݄ݏ݅݊݅ܨ ൌ   ோଷ, and′ܦଶହ൅′ܦଶ଴൅′݄ݏ݅݊݅ܨ

ଶଷ,ଶସߩ ൌ ଶଷ,ଶହߩ ൌ ଶସ,ଶହߩ ൌ 0.75,  

so there is additional correlation for which we must account when computing	ߩଶ଻,ଷ଺. 

஺′ܦ ൌ ,ଶଷ′ܦሺݔܽܯ ଶସሻ′ܦ ൅ ஻′ܦ ଶ଻ , and′ܦ ൌ ଶହ′ܦ ൅  ோଷ′ܦ

ଶ଻,ଷ଺ߩ ൌ
ఙಷ೔೙೔ೞ೓ᇲమబ

మାఘವᇲಲ,ವᇲಳ
ఙವᇲಲ

ఙವᇲಳ
ఙಷᇲమళఙಷᇲయల

, which will is calculated separately for each possible 

outcome.  We will assume ߩ஽ᇲಲ,஽ᇲಳ ൌ 0.75 and compute the standard deviations, ߪ஽ᇲಲ and 

  .஽ᇱಳߪ

ெ௔௫ሺ஽ᇱమయ,஽ᇱమరሻߪ ൌ  .using Equation 10-9 ,݀ݓ10.23

஽ᇲಲߪ ൌ ටൣߪெ௔௫ሺ஽ᇱమయ,஽ᇱమరሻ൧
ଶ
൅ ஽ᇱమళ൧ߪൣ

ଶ
ൌ ඥሾ10.23ሿଶ ൅ ሾ6.00ሿଶ ൌ   ,݀ݓ11.86

஽ᇲಳߪ ൌ ටൣߪ஽ᇱమఱ൧
ଶ
൅ ஽ᇱೃయ൧ߪൣ

ଶ
ൌ ቊ

ඥሾ7.50ሿଶ ൅ ሾ2.04ሿଶ ൌ ݀ݓ7.77 , ݂݅	ܴଷ	, ݌ ൌ 0.3	

ඥሾ7.50ሿଶ ൅ ሾ0ሿଶ ൌ ݀ݓ7.50 , ݂݅	ܴଷതതത	, 1 െ ݌ ൌ 0.7
  

ߩ ൌ
ఙಷ೔೙೔ೞ೓ᇲమబ

మାఘವᇲಲ,ವᇲಳ
ఙವᇲಲ

ఙವᇲಳ
ఙಷᇲమళఙಷᇲయల

ൌ ൜
0.90510 , ݂݅	ܴଷ	, ݌ ൌ 0.3	
0.90507 , ݂݅	ܴଷതതത	, 1 െ ݌ ൌ 0.7

		  

The moments of the difference of the PDFs are 

ߤߜ ൌ ிᇲమళߤ െ ிᇲయలߤ ൌ ൜
െ25.57݀ݓ , ݂݅	ܴଷ	, ݌ ൌ 0.3
െ0.57݀ݓ , ݂݅	ܴଷതതത	, 1 െ ݌ ൌ 0.7

  

ߪߜ ൌ ටߪிᇲమళ
ଶ ൅ ிᇲయలߪ

ଶ െ ிᇲయలߪிᇲమళߪߩ2 ൌ ൜
݀ݓ8.752 , ݂݅	ܴଷ	, ݌ ൌ 0.3
݀ݓ8.753 , ݂݅	ܴଷതതത	, 1 െ ݌ ൌ 0.7
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In the case where ܴଷ	occurs, we will assume the PDF of the difference is approximately 
normal since the two distributions are so highly correlated (ߩ ൌ 0.90510ሻ.  Given this, the 

integral of the PDF of the difference from–∞ to 0 is 0.9983, which is almost unity.  In the 
case where ܴଷ	does not occur, we will again assume a normal distribution for the PDF of 

the difference.  The resulting integral of the PDF of the difference from–∞ to 0 is 0.5259.  
Combining these two CIs, we get a 30% probability that ܫܥଷ଺	is 0.9983 and a 70% 
probability that ܫܥଷ଺	is 0.5259.  These probabilities result in  

ଷ଺ܫܥ ൌ 0.3ሺ	0.99830ሻ ൅ 0.7ሺ0.5259ሻ ൌ 0.6676 , so ܫܥଶ଻ ൌ 1 െ 0.6676 ൌ 0.3324  

The relationship for the duration ܦሾଶଷ,ଶଽሿ can be rewritten as	

ሾଶଷ,ଶଽሿܦ ൌ ൜
,ଶଷܦሺݔሺ݉ܽݔܽ݉ ଶସሻܦ ൅ ,ଶ଻ܦ ଶହܦ ൅ ଷ଺ሻܦ , ݌ ൌ 0.3324	

ଶହܦ ൅ ଷ଺ܦ , 1 െ ݌ ൌ 0.6676
ൠ ൅  ଶଽܦ

Since task 25 belongs to the same path as (and is a single predecessor to) task 36, then 
ଶହܫܥ ൌ 0.6676.  

The remaining two tasks, tasks 23 and 24, have identical distributions as shown in Table 
11-15, so they have an equal probability of being on the critical path.  Given this we can 
multiply the CI of their path (CI=0.3324) by 0.5 to equally divide their probabilities of 
being on the critical path. 

ଶଷܫܥ ൌ ଶସܫܥ ൌ ሺ0.5ሻሺ0.3324ሻ ൌ 0.1662 

11.2.1.9 Schedule Risk Summary 
Table 11-22 summarizes the duration statistics (as well as the start and finish dates in 
workdays) and the CIs calculated in the previous section. The durations, start and finish 
dates are converted to calendar dates in Table 11-23 to display the actual duration statistics 
in days as well as the calendar days representing the statistics of the start and finish dates 
of the tasks. 

Table 11-22 Workday Results for Schedule Risk Analysis 

Task ID   ᇱ࢔࢕࢏࢚ࢇ࢛࢘ࡰࣆ ᇱ࢔࢕࢏࢚ࢇ࢛࢘ࡰ࣌ ࣆ ᇱ࢚࢘ࢇ࢚ࡿ ࣌ ᇱ࢚࢘ࢇ࢚ࡿ ࣆ ᇱࢎ࢙࢏࢔࢏ࡲ  ᇱࢎ࢙࢏࢔࢏ࡲ࣌ CI 

10  152.50  3.49 10/01/12 0.00 03/02/13 3.49  100%

11  101.67  3.12 10/01/12 0.00 01/10/13 3.12  100%

12  50.83  1.56 01/10/13 3.12 03/02/13 3.49  100%

14  82.67  4.99 03/02/13 3.49 05/24/13 6.09  100%

15  165.33  9.98  05/24/13  6.09  11/05/13  11.69  0%

16  62.00  3.74  05/24/13  6.09  07/25/13  7.14  100%

17  103.33  6.24  07/29/13  12.55  11/09/13  14.02  0%

18  165.33  9.98  07/29/13  12.55  01/10/14  16.03  100%

19  124.00  7.48  07/29/13  12.55  11/30/13  14.61  0%
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Task ID   ᇱ࢔࢕࢏࢚ࢇ࢛࢘ࡰࣆ ᇱ࢔࢕࢏࢚ࢇ࢛࢘ࡰ࣌ ࣆ ᇱ࢚࢘ࢇ࢚ࡿ ࣌ ᇱ࢚࢘ࢇ࢚ࡿ ࣆ ᇱࢎ࢙࢏࢔࢏ࡲ  ᇱࢎ࢙࢏࢔࢏ࡲ࣌ CI 

20  93.00  5.61 01/10/14 16.03 04/13/14 16.99  100%

23  114.00  10.39 04/13/14 16.98 08/05/14 19.91  16.62%

24  114.00  10.39 04/13/14 16.98 08/05/14 19.91  16.62%

25  157.50  7.50 04/13/14 16.98 09/18/14 18.57  66.76%

27  40.00  6.00 08/08/14 19.70 09/17/14 20.59  33.24%

28  36.17  3.60 09/17/14 20.59 10/23/14 20.90  0%

29  62.00  6.16 09/28/14 20.78 11/29/14 21.68  100%

30  72.00  7.38 11/30/14 21.68 02/10/15 22.90  100%

32  10.00  3.00 02/10/15 22.90 02/20/15 23.10  100%

34  0.00  0.00 08/05/14 19.91 08/05/14 19.91  0%

35  4.00  10.32 07/25/13 7.14 07/29/13 12.55  100%

36  7.50  11.51 09/18/14 18.57 09/25/14 21.85  66.76%

 

Table 11-23 Calendar Day Results for Schedule Risk Analysis 

Task ID   ࢔࢕࢏࢚ࢇ࢛࢘ࡰࣆ ࢔࢕࢏࢚ࢇ࢛࢘ࡰ࣌ ࣆ ࢚࢘ࢇ࢚ࡿ ࣌ ࢚࢘ࢇ࢚ࡿ ࣆ ࢎ࢙࢏࢔࢏ࡲ  ࢎ࢙࢏࢔࢏ࡲ࣌ CI 

10  213.50  4.88 10/01/12 0.00 05/02/13 4.88  100%

11  142.33  4.37 10/01/12 0 02/20/13 4.37  100%

12  71.17  2.18 02/20/13 4.37 05/02/13 4.88  100%

14  115.73  6.98 05/02/13 4.88 08/26/13 8.52  100%

15  231.47  13.97 08/26/13 8.52 04/14/14 16.36  0%

16  86.80  5.24 08/26/13 8.52 11/21/13 10.00  100%

17  144.67  8.73 11/26/13 17.57 04/20/14 19.62  0%

18  231.47  13.97 11/26/13 17.57 07/16/14 22.45  100%

19  173.60  10.48 11/26/13 17.57 05/19/14 20.46  0%

20  130.20  7.86 07/16/14 22.44 11/23/14 23.78  100%

23  159.60  14.55 11/23/14 23.78 05/01/15 27.88  16.62%

24  159.60  14.55 11/23/14 23.78 05/01/15 27.88  16.62%

25  220.50  10.50 11/23/14 23.78 07/01/15 25.99  66.76%

27  56.00  8.40 05/06/15 27.58 07/01/15 28.83  33.24%

28  50.63  5.03 07/01/15 28.83 08/20/15 29.26  0%

29  86.80  8.63 07/16/15 29.10 10/10/15 30.35  100%

30  100.80  10.34 10/13/15 30.35 01/22/16 32.06  100%

32  14.00  4.20 01/22/16 32.06 02/05/16 32.34  100%

34  0.00  0.00 05/01/15 27.88 05/01/15 27.88  0%

35  5.60  14.45 11/21/13 10.00 11/26/13 17.57  100%

36  10.50  16.12 07/01/15 25.99 07/12/15 30.58  66.76%

 

By examining the CIs of the tasks in Table 11-22 and Table 11-23, we can reduce the 
equation representing the duration of the project to the following: 
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ܦ ൌ ଵଵܦ ൅ ଵଶܦ ൅ ଵସܦ ൅ ଵ଺ܦ ൅ ଷହܦ ൅ ଵ଼ܦ ൅ ଶ଴ܦ ൅ ሾଶଷ,ଶ଼ሿܦ ൅ ଶଽܦ ൅ ଷ଴ܦ ൅  ଷଶ, whereܦ

ሾଶଷ,ଶ଼ሿܦ ൌ ,ଶଷܦሺݔሾ݉ܽݔܽ݉ ଶସሻܦ ൅ ,ଶ଻ܦ ଶହܦ ൅   .ଷ଺ሿܦ

The use of this specific relationship is restricted to the definitions of the duration PDFs 
defined in the model.  If any of the PDFs of schedule duration changed in a manner that 
would affect the CIs of the tasks, the relationship may change. 

The PDF of the schedule distribution can be approximated by modeling it as a lognormal 
distribution, however if there are discrete risks in the probabilistic critical path (i.e., CI for 
any discrete risk is greater than zero) the distribution is accurately modeled as a mixed 
distribution.  Examining tasks 34, 35 and 36 we see that tasks 35 and 36 (risks ܴଶ and ܴଷ, 
respectively) are on the probabilistic critical path, so the project schedule will have a 
mixed distribution.  To compare the lognormal approximation to the mixed distribution, 
we calculate the lognormal parameters ܲ and ܳ for the schedule duration in workdays then 
derive the percentile statistics for the total schedule duration. 

Using Equations 4-5 and 4-6, with ߤ஽’೅೚೟ ൌ ஽’೅೚೟ߪ and ݀ݓ872.88 ൌ ஽ܲ’೅೚೟ ,݀ݓ23.09 ൌ

6.7714, and ܳ஽’೅೚೟ ൌ 0.0265.  The resulting plot of the lognormal approximation to the 

total schedule duration is shown in Figure 11-9. 

 

Figure 11-9 Lognormal Approximation of Total Schedule Duration 
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ܵଶ	:	ܴଶ	does not occur and ܴଷ	occurs. ܲሺܵଶሻ ൌ ሺ1 െ 0.3ሻሺ	0.15ሻ ൌ ሺ0.7ሻሺ0.15ሻ ൌ 0.105	
ܵଷ	:	ܴଶ	and ܴଷ	occur. ܲሺܵଷሻ ൌ ሺ0.3ሻሺ	0.15ሻ ൌ 0.045 

Risk ܴଶ is a discrete uniform distribution with zero duration if the risk does not occur and 
has three equiprobable outcomes if the risk occurs (15݀ݓ25 ,݀ݓ, or 40݀ݓ).  The 
equiprobable outcomes have conditional probabilities,	ܲሺܦሻ|ܲሺܴଶሻ ൌ 0.15/3 ൌ 0.05	.  
Risk ܴଶ has a ܫܥ ൌ 1 whether it occurs or not, so it will always be on the critical path.  If 
risk ܴଷ  occurs, it has a	1~ܫܥ, but if it does not occur, its ܫܥ ൌ 0.5259, and we will have to 
use the maximum of two PDFs to determine the correct duration to use.  It has two 
possible outcomes: if the risk does not occur the duration is zero, and if the risk occurs the 
duration is modeled by a triangular distribution ܶሺ20,25,30ሻ݀ݓ.  Given the contingent 
probabilities of the possible outcomes, we have: 

ܵ଴ : 1 outcome:	ܲሺܵ଴ሻ ൌ ௌబܦ ,0.595 ൌ 		݀ݓ0

ଵܵ	: 3 outcomes: 

	ܲሺ ଵܵ௔ሻ ൌ ሺ0.255ሻ ቀଵ
ଷ
ቁ ൌ ௌభೌܦ ; 0.085 ൌ 	݀ݓ15

	ܲሺ ଵܵ௕ሻ ൌ ሺ0.255ሻ ቀଵ
ଷ
ቁ ൌ ௌభ್ܦ ; 0.085 ൌ 	݀ݓ25

	ܲሺ ଵܵ௖ሻ ൌ ሺ0.255ሻ ቀଵ
ଷ
ቁ ൌ ௌభ೎ܦ ; 0.085 ൌ 	݀ݓ40

ܵଶ	: 1 outcome: ܲሺܵଶሻ ൌ ௌమܦ ;0.105 ൌ ܶሺ20,25,30ሻ݀ݓ	

ܵଷ	: 3 outcomes: 

	ܲሺܵଷ௔ሻ ൌ ሺ0.045ሻ ቀଵ
ଷ
ቁ ൌ ௌయೌܦ ; 0.015 ൌ 15 ൅ ܶሺ20,25,30ሻ ൌ ܶሺ35,40,45ሻ݀ݓ	

	ܲሺܵଷ௕ሻ ൌ ሺ0.045ሻ ቀଵ
ଷ
ቁ ൌ ௌయ್ܦ ; 0.015 ൌ 25 ൅ ܶሺ20,25,30ሻ ൌ ܶሺ45,50,55ሻ݀ݓ	

	ܲሺܵଷ௖ሻ ൌ ሺ0.045ሻ ቀଵ
ଷ
ቁ ൌ ௌయ೎ܦ ; 0.015 ൌ 40 ൅ ܶሺ20,25,30ሻ ൌ ܶሺ60,65,70ሻ݀ݓ	

The continuous distribution to which we combine these discrete risk states (with eight 
possible outcomes and associated probabilities of occurrence) is composed of tasks 11, 12, 
14, 16, 18, 20, 29, and 30.  All of these tasks are on the critical path 100% of the time and 
have uncorrelated durations, so their durations are additive.  The means will be additive 
and the standard deviation of the total will be the square root of the sum of the squares of 
the standard deviations.  The resulting statistics of the continuous distribution are shown in 
Table 11-24. 
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Table 11-24 Continuous Distribution Statistics 

Task ᇱࡰࣆ ᇱࡰ࣌
11 101.67 3.12

12 50.83 1.56

14 82.67 4.99

16 62.00 3.74

18 165.33 9.98

20 93.00 5.61

29 62.00 6.16

30 72.00 7.38

32 10.00 3.00

Total 699.50 16.84

 

When ܴଷ does not occur (ܴଷതതതሻ, the duration of the discrete distribution is governed by the 
following equation: 

ሾଶଷ,ଶ଼ሿܦ ൌ max	ሺ݉ܽݔሺܦଶଷ, ଶସሻܦ ൅ ,ଶ଻ܦ   ଶହሻܦ

Calculating the mean and standard deviations of the maximum of these distributions 
(assuming again that	ߩ஽ᇲಲ,஽ᇲಳ ൌ 0.75 ) using Equations 10-8 through 10-10, we get: 

஽ೃయതതതതߤ ൌ ஽ೃయതതതതߪ and ݀ݓ160.40 ൌ  .݀ݓ9.50

The resulting duration statistics for each state are shown in Table 11-25. 

Table 11-25 Discrete State Duration Statistics of ࡰሾ૛૜,૛ૡሿand ࡰ૜૞ 

State  Risk 
Occurrence 

Prob ᇱࡰࣆ ᇱࡰ࣌

ܵ଴  ܴଶതതത ∩ ܴଷതതത  0.595 160.40 9.50 

ଵܵ௔  ܴଶ௔ ∩ ܴଷതതത  0.085 175.40 9.50 

ଵܵ௕  ܴଶ௕ ∩ ܴଷതതത  0.085 185.40 9.50 

ଵܵ௖  ܴଶ௕ ∩ ܴଷതതത  0.085 200.40 9.50 

ܵଶ  ܴଶതതത ∩ ܴଷ  0.105 182.50 9.71 

ܵଷ௔  ܴଶ௔ ∩ ܴଷ  0.015 197.50 9.71 

ܵଷ௕  ܴଶ௕ ∩ ܴଷ  0.015 207.50 9.71 

ܵଷ௖  ܴଶ௖ ∩ ܴଷ  0.015 222.50 9.71 

 

Combining the continuous and discrete duration statistics into mixed distribution statistics 
(Table 11-26) allows us to compose the mixed distribution shown in Figure 11-10. 
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Table 11-26 Mixed Distribution of Duration Statistics 

State  Risk 
Occurrence 

Prob.  ᇱࡰࣆ ᇱࡰ࣌ ᇱࡰࡼ  ᇱࡰࡽ

ܵ଴  ܴଶതതത ∩ ܴଷതതത  0.595 859.90 19.33 6.757  0.022 

ଵܵ௔	 ܴଶ௔ ∩ ܴଷതതത  0.085 874.90 19.33 6.774  0.022 

ଵܵ௕  ܴଶ௕ ∩ ܴଷതതത  0.085 884.90 19.33 6.785  0.022 

ଵܵ௖  ܴଶ௕ ∩ ܴଷതതത  0.085 899.90 19.33 6.802  0.021 

ܵଶ  ܴଶതതത ∩ ܴଷ  0.105 882.00 19.44 6.782  0.022 

ܵଷ௔  ܴଶ௔ ∩ ܴଷ  0.015 897.00 19.44 6.799  0.022 

ܵଷ௕  ܴଶ௕ ∩ ܴଷ  0.015 907.00 19.44 6.810  0.021 

ܵଷ௖  ܴଶ௖ ∩ ܴଷ  0.015 922.00 19.44 6.826  0.021 

 

 

Figure 11-10 Mixed Distribution of Total Schedule Duration 

When we compare plots of the lognormal approximation to the mixed distribution we see 
the lognormal approximation is a reasonable one. 

 

Figure 11-11 Mixed Distribution and Lognormal Approximation of Total Schedule 
Duration 
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Comparing the results of our analytic approximation to a 100,000-trial statistical 
simulation we see very good agreement as well.  Differences in the statistics are due to 
sampling errors in the simulation (for wd statistics) and due to conversion of the analytic 
results into calendar dates (for cd statistics). 

Table 11-27 Comparison of Analytic and Statistical Simulation Finish Date Statistics 

Finish Date   Analytic Approach Statistical Simulation

 ᇱ (wd)ࡲࣆ 02/20/15 02/18/15

 ᇱ (wd)ࡲ࣌ 23.09 23.74

 (cd) ࡲࣆ 02/05/16 01/24/16

 (cd) ࡲ࣌ 32.34 33.17

11.2.2 Cost	Probability	Distribution	
The program’s costs are the sum of the lowest-level WBS elements shown in Table 11-28.  
The cost of each lowest-level WBS element is defined by a time-dependent (TD) costs 
(i.e., those costs that vary with the duration of each task), and a time-independent (TI) cost 
(i.e., the probabilistic daily rate or other additive costs not related to schedule duration). 

Table 11-28 NASA Example WBS and Point Estimate 

WBS  WBS Description Point Estimate, $

1  Analysis File  $151,500,000.00 

1.1  Milestone Summary  $0.00 

1.1.1  Project ATP 

1.1.2  PDR 

1.1.3  CDR 

1.1.4  Rocket delivery 

1.2  Project Support Costs hammock task $20,000,000.00 

1.2.1  Support Start 

1.2.2  Support Finish 

1.3  Preliminary Design  $9,000,000.00 

1.3.1  Requirements definition and documentation $4,000,000.00 

1.3.2  Preliminary design activities $5,000,000.00 

1.4  Detailed Design  $48,500,000.00 

1.4.1  Initial detailed design 

1.4.2  Design GN&C  $15,000,000.00 

1.4.3  Trade studies and analysis

1.4.4  Design pyrotechnics  $7,500,000.00 

1.4.5  Design propulsion system $12,000,000.00 

1.4.6  Design structures and mechanisms $9,000,000.00 

1.4.7  Finalize integrated design $5,000,000.00 

1.5  Development and Unit Testing $42,000,000.00 

1.5.1  Fabricate rocket Components $30,000,000.00 

1.5.1.1  Fabricate and unit test structure (including pyros) $20,000,000.00 

1.5.1.2  Fabricate and unit test engine $10,000,000.00 

1.5.2  Develop and test flight software for GN&C $12,000,000.00 

1.6  Integration and Testing  $29,000,000.00 

1.6.1  Integrate rocket components $6,000,000.00 
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WBS  WBS Description Point Estimate, $

1.6.2  Test frame, fuel system and engine $8,000,000.00 

1.6.3  Test guidance system  $5,000,000.00 

1.6.4  Final integration and testing $10,000,000.00 

1.7  Delivery  $3,000,000.00 

1.7.1  Delivery  $3,000,000.00 

2  Risk Register  $0.00 

2.1  Risk 1 ‐ TI ‐ Additional Purchase $0.00 

2.2  Risk 2 ‐ Duration ‐ Additional Studies Required $0.00 

2.3  Risk 3 ‐ TI and Duration ‐ Delay from Additional Software Purchase $0.00 

 

Individual lowest-level WBS element Costs,	 ௜ܺ, are defined by the combination of TD and 
TI costs as follows: 

 ௜ܺ ൌ

ቊ
൫ܶܦ௜்ߝ஽೔൯൫ܶܫ௜்ߝூ೔൯ ൌ ூ೔்ߝ௜݁ݐ஽೔்ܴܽߝ௜′݊݋݅ݐܽݎݑܦ , ݂݅ ܫܶ ݏ݅ ݁ݒ݅ݐ݈ܽܿ݅݌݅ݐ݈ݑ݉

ൣ൫ܶܦ௜்ߝ஽೔൯ሺܶܫ௜ሻ൧ ൅ ௜ߝ ൌ ൫݊݋݅ݐܽݎݑܦ′௜்ߝ஽೔ܴܽ݁ݐ௜൯ ൅ ூ೔்ߝ , ݁ݒ݅ݐ݅݀݀ܽ	ݏ݅	ܫܶ	݂݅
,  

where: 
ூ೔்ߝ  is the TI PDF 
 ஽೔ is the TD PDF்ߝ
 .௜ is the probabilistic task duration in wd′݊݋݅ݐܽݎݑܦ
 .௜ is the nominal cost per wd݁ݐܴܽ

11-2 

 

11.2.2.1 Cost-Estimating-Level Uncertainty Statistics 
The rate, and the TI and TD PDFs for each lowest-level WBS element in the NASA 
example are shown in Table 11-29. 

Table 11-29 NASA Resource-Loaded Schedule TI and TD Cost PDFs 

WBS  Rate ($/wd.) TD Cost PDF TI Cost PDF

1.2  $23,809.52   N*(100,5)

1.3.1  $40,000.00   T*(95,100,105)

1.3.2  $90,000.00   T*(95,100,105) N (500000,40000);
 (DESFABCOST=0.3) 

1.4.1  $0.00  

1.4.2  $93,750.00   T*(95,100,105)

1.4.3   

1.4.4  $75,000.00   T*(95,100,105)

1.4.5  $75,000.00   T*(95,100,105)

1.4.6  $75,000.00   T*(95,100,105)

1.4.7  $55,555.56   T*(95,100,105)

1.5.1.1  $166,666.67  T*(95,100,105) T*(80,100,110); 

(DESFABCOST=0.3) 
1.5.1.2  $83,333.33   T*(95,100,105) T*(80,100,110); 

 (DESFABCOST=0.3) 
1.5.2  $80,000.00   T*(95,100,105)
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The means and standard deviations of the triangular TD and TI PDFs are calculated using 
Equations 4-1and 4-2. Table 11-30 shows the rates and workday duration statistics of the 
schedule summary tasks.  

Table 11-30 Rate, Duration and Uncertainty Statistics for Cost-Estimating-Level 
WBS Elements 

WBS  Rate  ૄ۲ᇱ ો۲ᇱ ૄઽ۲܂ ોઽ۲܂ ૄઽ۷܂ ોઽ۷܂  
1.2  $23,809.52  872.88 23.10 1 0.0500    

1.3.1  $40,000.00  101.67 3.12 1 0.0204    

1.3.2  $90,000.00  50.83 1.56 1 0.0204 +500000  40000 

1.4.2  $93,750.00  165.33 9.98 1 0.0204    

1.4.4  $75,000.00  103.33 6.24 1 0.0204    

1.4.5  $75,000.00  165.33 9.98 1 0.0204    

1.4.6  $75,000.00  124.00 7.48 1 0.0204    

1.4.7  $55,555.56  93.00 5.61 1 0.0204    

1.5.1.1  $166,666.67  114.00 10.39 1 0.0204 0.9667  0.0624 

1.5.1.2  $83,333.33  114.00 10.39 1 0.0204 0.9667  0.0624 

1.5.2  $80,000.00  157.5 7.50 1 0.0204 1  0 

1.6.1  $150,000.00  40.00 6.00 1 0.0204    

1.6.2  $228,571.43  36.17 3.60 1 0.0204    

1.6.3  $83,333.33  62.00 6.16 1 0.0204    

1.6.4  $142,857.14  72.00 7.38 1 0.0204    

1.7.1  $300,000.00  10.00 3.00 1 0    

 

Using values form Table 11-30 and Equation 11-2, we can calculate the mean and standard 
deviation of each cost-estimating-level WBS Element (Table 11-31). 

Table 11-31 Mean and Standard Deviations of Cost-Estimating-Level WBS Elements 

WBS  ܆ૄ ો܆
1.2 $20,782,813.74 $549,947.19

1.3.1 $4,066,666.67  $149,842.51 

1.3.2 $5,075,000.00  $173,253.56 

1.4.2 $15,500,000.00 $987,658.22

1.4.4 $7,750,000.00  $493,829.11 

1.4.5 $12,400,000.00  $790,126.57 

1.4.6 $9,300,000.00  $592,594.93 

1.6.1  $150,000.00  T*(95,100,105)

1.6.2  $228,571.43  T*(95,100,105)

1.6.3  $83,333.33   T*(95,100,105)

1.6.4  $142,857.14  T*(95,100,105)

1.7.1  $300,000.00 

2.1    R(0.3,T($8M,$10M,$13M)) 

2.2   

2.3    R(0.3,T($13M,$15M,$20M)) 
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WBS  ܆ૄ ો܆
1.4.7 $5,166,666.67  $329,219.41 

1.5.1.1 $18,366,666.67  $2,088,349.29 

1.5.1.2 $9,183,333.33  $1,044,174.65 

1.5.2 $12,600,000.00  $652,916.53 

1.6.1 $6,000,000.00  $908,480.87 

1.6.2 $8,266,666.67  $839,232.45 

1.6.3 $5,166,666.67  $524,520.28 

1.6.4 $10,285,714.29  $1,075,541.71 

1.7.1 $3,000,000.00 $900,000.00

11.2.2.2 Computing WBS-Element Correlations 
The statistics of the summary-level WBS elements are computed using the FRISK method 
described in Section 4.2.2.1.  All but four of the WBS elements in the NASA resource-
loaded schedule are uncorrelated to each other.  Correlations are defined between the 
following: 1) schedule duration PDFs for WBS elements 1.5.1.1, 1.5.1.2, and 1.5.2 (i.e., 
tasks 23, 24 and 25) with a correlation coefficient defined by ߩ஽ா௏஽௎ோ ൌ 0.75;  and 
between time independent cost PDFs for WBS elements 1.3.2, 1.5.1.1, 1.5.1.2 (i.e., tasks 
12, 23 and 24) with a correlation coefficient defined by ߩ஽ாௌி஺஻஼ைௌ் ൌ 0.3. 

The effects of the correlated schedule durations will manifest themselves in the standard 
deviations of the cost summations of WBS elements 1.5 and 1.51.  The correlated time 
independent cost correlations will affect the standard deviations of the WBS elements 
where they are summed (i.e. WBS elements 1 and 1.51).  The standard deviations of all 
other summary WBS elements can be computed using a root-sum-square of their 
constituent WBS elements. 

The correlations between schedule durations and the respective costs for WBS elements 
1.5.1.1, 1.5.1.2, and 1.5.2 are ߩଵ.ହ.ଵ.ଵ,ଵ.ହ.ଵ.ଶ, ߩଵ.ହ.ଵ.ଵ,ଵ.ହ.ଶ, and ߩଵ.ହ.ଵ.ଶ,ଵ.ହ.ଶ, respectively.  We 

will calculate them in that order. 

 ૚.૞.૚.૚,૚.૞.૚.૛࣋

We use Equation 4-26, and following the steps in Section 8 to compute the correlation 
coefficient. From Section 8, Step 1, which is: 

ଵ.ହ.ଵ.ଵ,ଵ.ହ.ଵ.ଶߩ ൌ
ாሾ௑భ.ఱ.భ.భ௑భ.ఱ.భ.మሿିாሾ௑భ.ఱ.భ.భሿாሾ௑భ.ఱ.భ.మሿ

ఙభ.ఱ.భ.భఙభ.ఱ.భ.మ
ൌ ாሾ௑భ.ఱ.భ.భ௑భ.ఱ.భ.మሿିఓభ.ఱ.భ.భఓభ.ఱ.భ.మ

ఙభ.ఱ.భ.భఙభ.ఱ.భ.మ
  

ଵܺ.ହ.ଵ.ଵ ൌ ൫݊݋݅ݐܽݎݑܦ′ଵ.ହ.ଵ.ଵ்ߝ஽భ.ఱ.భ.భ൯൫ܴܽ݁ݐଵ.ହ.ଵ.ଵ்ߝூభ.ఱ.భ.భ൯  

The TD uncertainty defined for WBS 1.5.1.1 is	்ߝ஽భ.ఱ.భ.భ ൌ ܶሺ0.95,1.00,1.05ሻ. Using 

Equations 4-1 and 4-2, ߤఌ೅ವభ.ఱ.భ.భ ൌ 1, and ߪఌ೅ವభ.ఱ.భ.భ ൌ 0.0204. 
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The TI uncertainty defined for WBS 1.5.1.1 is	்ߝூభ.ఱ.భ.భ ൌ ܶሺ0.80,1.00,1.10ሻ.  Using 

Equations 4-1 and 4-2 we get:	ߤఌ೅಺భ.ఱ.భ.భ ൌ 0.9667, and ߪఌ೅಺భ.ఱ.భ.భ ൌ 0.0624.  

We can rearrange the cost function as ଵܺ.ହ.ଵ.ଵ ൌ ܴଵ.ହ.ଵ.ଵܦ′ଵ.ହ.ଵ.ଵ்ߝ஽ሺଵ.ହ.ଵ.ଵሻ்ߝூሺଵ.ହ.ଵ.ଵሻ, and by 

setting ߝଵ.ହ.ଵ.ଵ ൌ  .ூሺଵ.ହ.ଵ.ଵሻ, we can simplify some of the equations்ߝ஽ሺଵ.ହ.ଵ.ଵሻ்ߝ

By definition for each WBS element, the TI and TD uncertainty PDFs are uncorrelated, so 

ఌభ.ఱ.భ.భߤ ൌ  ఌ೅಺ሺభ.ఱ.భ.భሻ, andߤఌ೅ವሺభ.ఱ.భ.భሻߤ

ఌభ.ఱ.భ.భߪ ൌ ටቀߪఌ೅ವሺభ.ఱ.భ.భሻߤఌ೅಺ሺభ.ఱ.భ.భሻቁ
ଶ
൅ ቀߤఌ೅ವሺభ.ఱ.భ.భሻߪఌ೅಺ሺభ.ఱ.భ.భሻቁ

ଶ
൅ ቀߪఌ೅ವሺభ.ఱ.భ.భሻߪఌ೅಺ሺభ.ఱ.భ.భሻቁ

ଶ
.  

From Table 11-30 ߤ஽ᇱభ.ఱ.భ.భ ൌ ஽ᇱమయߤ ൌ ஽ᇱభ.ఱ.భ.భߪ	,݀ݓ114 ൌ ஽ᇱమయߪ ൌ  and ,݀ݓ10.39

ଵ.ହ.ଵ.ଵ݁ݐܴܽ ൌ $166,666.67	, which is a constant.  

From Step 2a, ߤଵ.ହ.ଵ.ଵ ൌ ఌభ.ఱ.భ.భ൯ߤ஽ᇱభ.ఱ.భ.భߤோభ.ఱ.భ.భ൫ߤ ൌ $166,666.67ሺ114ሻሺ0.9667ሻ ൌ

$18,366,666.67  

From Step 2b, ߪଵ.ହ.ଵ.ଵ ൌ ଵ.ହ.ଵ.ଵሻߪሺݎܸܽ ൌ ܴଵ.ହ.ଵ.ଵܸܽݎሺܦ′ଵ.ହ.ଵ.ଵߝଵ.ହ.ଵ.ଵሻ  

Using the propagation of errors method: 

ଵ.ହ.ଵ.ଵߪ ൌ ܴଵ.ହ.ଵ.ଵට൫ߪ஽ᇱభ.ఱ.భ.భߤఌభ.ఱ.భ.భ൯
ଶ
൅ ൫ߤ஽ᇱభ.ఱ.భ.భߪఌభ.ఱ.భ.భ൯

ଶ
൅ ൫ߪ஽ᇱభ.ఱ.భ.భߪఌభ.ఱ.భ.భ൯

ଶ
  

ଵ.ହ.ଵ.ଵߪ ൌ

$166,666.67ඥሺሾ10.39ሿሾ0.9667ሿሻଶ ൅ ሺሾ114ሿሾ0.06542ሿሻଶ ൅ ሺሾ10.39ሿሾ0.06542ሿሻଶ  

ଵ.ହ.ଵ.ଵߪ ൌ $2,088,349.29.  

Using the same formulation for ଵܺ.ହ.ଵ.ଶ, we get: 

ଵ.ହ.ଵ.ଶߤ	 ൌ $9,183,333.33		and ߪଵ.ହ.ଵ.ଶ ൌ $1,044,174.65			  

From step 2c,  

ଵܺ.ହ.ଵ.ଵ ଵܺ.ହ.ଵ.ଶ ൌ ܴଵ.ହ.ଵ.ଵሺܦ′ଵ.ହ.ଵ.ଵߝଵ.ହ.ଵ.ଵሻܴଵ.ହ.ଵ.ଶሺܦ′ଵ.ହ.ଵ.ଶߝଵ.ହ.ଵ.ଶሻ  

ଵܺ.ହ.ଵ.ଵ ଵܺ.ହ.ଵ.ଶ ൌ ܴଵ.ହ.ଵ.ଵܴଵ.ହ.ଵ.ଶሺܦ′ଵ.ହ.ଵ.ଵߝଵ.ହ.ଵ.ଵሻሺܦ′ଵ.ହ.ଵ.ଶߝଵ.ହ.ଵ.ଶሻ  

From Step 2d, ܽ ൌ ܴଵ.ହ.ଵ.ଵܴଵ.ହ.ଵ.ଶ  

ሾܧ ଵܺ.ହ.ଵ.ଵ ଵܺ.ହ.ଵ.ଶሿ ൌ   ଵ.ହ.ଵ.ଶሻሿߝଵ.ହ.ଵ.ଶ′ܦଵ.ହ.ଵ.ଵሻሺߝଵ.ହ.ଵ.ଵ′ܦሾሺܧܽ

Grouping correlated error terms gives us: 
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ሾܧ ଵܺ.ହ.ଵ.ଵ ଵܺ.ହ.ଵ.ଶሿ ൌ   ଵ.ହ.ଵ.ଶሻሿߝଵ.ହ.ଵ.ଵߝଵ.ହ.ଵ.ଶሻሺ′ܦଵ.ହ.ଵ.ଵ′ܦሾሺܧܽ

ሾܧ ଵܺ.ହ.ଵ.ଵ ଵܺ.ହ.ଵ.ଶሿ ൌ   ଵ.ହ.ଵ.ଶሻሿߝଵ.ହ.ଵ.ଵߝሾሺܧଵ.ହ.ଵ.ଶሻሿ′ܦଵ.ହ.ଵ.ଵ′ܦሾሺܧܽ

ଵ.ହ.ଵ.ଶሿ′ܦଵ.ହ.ଵ.ଵ′ܦሾܧ ൌ ஽ᇱభ.ఱ.భ.మߤ஽ᇱభ.ఱ.భ.భߤ ൅   ஽ᇱభ.ఱ.భ.మߪ஽ᇱభ.ఱ.భ.భߪ஽ᇱభ.ఱ.భ.భ,஽ᇱభ.ఱ.భ.మߩ

ଵ.ହ.ଵ.ଶሿ′ܦଵ.ହ.ଵ.ଵ′ܦሾܧ ൌ ሺ114ሻሺ114ሻ ൅ ሺ0.75ሻሺ10.39ሻሺ10.39ሻ ൌ 13,077  

Expanding the expectation of the uncertainty term, we get: 

ଵ.ହ.ଵ.ଵሿߝଵ.ହ.ଵ.ଶߝሾܧ ൌ   ூሺଵ.ହ.ଵ.ଶሻ൧்ߝ஽ሺଵ.ହ.ଵ.ଶሻ்ߝூሺଵ.ହ.ଵ.ଵሻ்ߝ஽ሺଵ.ହ.ଵ.ଵሻ்ߝൣܧ

ൌ   ூሺଵ.ହ.ଵ.ଶሻ൧்ߝூሺଵ.ହ.ଵ.ଵሻ்ߝൣܧ஽ሺଵ.ହ.ଵ.ଶሻ൧்ߝ஽ሺଵ.ହ.ଵ.ଵሻ்ߝൣܧ

ൌ ቀߤఌ೅ವሺభ.ఱ.భ.భሻߤఌ೅ವሺభ.ఱ.భ.మሻቁ ቀߤఌ೅಺ሺభ.ఱ.భ.భሻߤఌ೅಺ሺభ.ఱ.భ.మሻ ൅   ఌ೅಺ሺభ.ఱ.భ.మሻቁߪఌ೅಺ሺభ.ఱ.భ.భሻߪఌ೅಺ሺభ.ఱ.భ.భሻ,ఌ೅಺ሺభ.ఱ.భ.మሻߩ

ൌ ቀߤఌ೅಺ሺభ.ఱ.భ.భሻߤఌ೅಺ሺభ.ఱ.భ.మሻ ൅   ఌ೅಺ሺభ.ఱ.భ.మሻቁߪఌ೅಺ሺభ.ఱ.భ.భሻߪఌ೅಺ሺభ.ఱ.భ.భሻ,ఌ೅಺ሺభ.ఱ.భ.మሻߩ

ଵ.ହ.ଵ.ଵሿߝଵ.ହ.ଵ.ଶߝሾܧ ൌ ఌ೅಺ሺభ.ఱ.భ.మሻߤఌ೅಺ሺభ.ఱ.భ.భሻߤ ൅   ఌ೅಺ሺభ.ఱ.భ.మሻߪఌ೅಺ሺభ.ఱ.భ.భሻߪఌ೅಺ሺభ.ఱ.భ.భሻ,ఌ೅಺ሺభ.ఱ.భ.మሻߩ

ଵ.ହ.ଵ.ଵሿߝଵ.ହ.ଵ.ଶߝሾܧ ൌ ሺ0.9667ሻሺ0.9667ሻ ൅ ሺ0.3ሻሺ0.0624ሻሺ0.0624ሻ ൌ 0.9356  

Recombining terms, we get: 

ଵ.ହ.ଵ.ଵሿߝଵ.ହ.ଵ.ଶߝሾܧଵ.ହ.ଵ.ଶሿ′ܦଵ.ହ.ଵ.ଵ′ܦሾܧ ൌ

൫ߤ஽ᇱభ.ఱ.భ.భߤ஽ᇱభ.ఱ.భ.మ ൅ ஽ᇱభ.ఱ.భ.మ൯ߪ஽ᇱభ.ఱ.భ.భߪ஽ᇱభ.ఱ.భ.భ,஽ᇱభ.ఱ.భ.మߩ ቀߤఌ೅಺ሺభ.ఱ.భ.భሻߤఌ೅಺ሺభ.ఱ.భ.మሻ ൅

  ఌ೅಺ሺభ.ఱ.భ.మሻቁߪఌ೅಺ሺభ.ఱ.భ.భሻߪఌ೅಺ሺభ.ఱ.భ.భሻ,ఌ೅಺ሺభ.ఱ.భ.మሻߩ

ாሾ௑భ.ఱ.భ.భ௑భ.ఱ.భ.మሿ

௔
ൌ ሺ13077ሻሺ0.9356	ሻ ൌ 12,234.99  

஽ᇱభ.ఱ.భ.మߤ஽ᇱభ.ఱ.భ.భߤ ൌ ሺ114ሻሺ114ሻ ൌ 12,996  

From Step 3, and removing the rate term, we get: 

ଵ.ହ.ଵ.ଵ,ଵ.ହ.ଵ.ଶߩ ൌ
ଵଶ,ଶଷସ.ଽଽିଵଶ,ଽଽ଺

ሺଵ଴.଺ହଵ଼ሻሺଵ଴.଺ହଵ଼ሻ
ൌ 0.5793  

 ૚.૞.૚.૛,૚.૞.૛࣋ ૚.૞.૚.૚,૚.૞.૛ and࣋

ఌభ.ఱ.భభ,ఌభ.ఱ.మߩ ଵ.ହ.ଵ.ଶ,ଵ.ହ.ଶ are calculated in a similar fashion, exceptߩ	ଵ.ହ.ଵ.ଵ,ଵ.ହ.ଶ andߩ ൌ 0 and 

ఌభ.ఱ.భమ,ఌభ.ఱ.మߩ ൌ 0. 

This simplifies the product moment term to: 
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ଵ.ହ.ଵ.ଵሿߝଵ.ହ.ଶߝሾܧଵ.ହ.ଶሿ′ܦଵ.ହ.ଵ.ଵ′ܦሾܧ ൌ

൫ߤ஽ᇱభ.ఱ.భ.భߤ஽ᇱభ.ఱ.మ ൅ ஽ᇱభ.ఱ.మ൯ߪ஽ᇱభ.ఱ.భ.భߪ஽ᇱభ.ఱ.భ.భ,஽ᇱభ.ఱ.మߩ ቀߤఌ೅಺ሺభ.ఱ.భ.భሻߤఌ೅಺ሺభ.ఱ.మሻቁ  

This results in correlation equations ߩଵ.ହ.ଵ.ଵ,ଵ.ହ.ଶ and ߩଵ.ହ.ଵ.ଶ,ଵ.ହ.ଶ (by similarity), which are: 

ଵ.ହ.ଵ.ଵ,ଵ.ହ.ଶߩ ൌ
൫ఓವᇲభ.ఱ.భ.భఓವᇲభ.ఱ.మାఘವᇲభ.ఱ.భ.భ,ವᇲభ.ఱ.మఙವᇲభ.ఱ.భ.భఙವᇲభ.ఱ.మ൯ቀఓഄ೅಺ሺభ.ఱ.భ.భሻఓഄ೅಺ሺభ.ఱ.మሻቁିఓವᇲభ.ఱ.భ.భఓವᇲభ.ఱ.మ

ට൫ఙವᇲభ.ఱ.భ.భ൯
మ
ା൫ఓವᇲభ.ఱ.భ.భఙഄభ.ఱ.భ.భ൯

మ
ା൫ఙವᇲభ.ఱ.భ.భఙഄభ.ఱ.భ.భ൯

మට൫ఙವᇲభ.ఱ.భ.య൯
మ
ା൫ఓವᇲభ.ఱ.భ.యఙഄభ.ఱ.భ.య൯

మ
ା൫ఙವᇲభ.ఱ.భ.యఙഄభ.ఱ.భ.య൯

మ
  

ଵ.ହ.ଵ.ଶ,ଵ.ହ.ଶߩ ൌ
൫ఓವᇲభ.ఱ.భ.మఓವᇲభ.ఱ.మାఘವᇲభ.ఱ.భ.మ,ವᇲభ.ఱ.మఙವᇲభ.ఱ.భ.మఙವᇲభ.ఱ.మ൯ቀఓഄ೅಺ሺభ.ఱ.భ.మሻఓഄ೅಺ሺభ.ఱ.మሻቁିఓವᇲభ.ఱ.భ.మఓವᇲభ.ఱ.మ

ට൫ఙವᇲభ.ఱ.భ.మ൯
మ
ା൫ఓವᇲభ.ఱ.భ.మఙഄభ.ఱ.భ.మ൯

మ
ା൫ఙವᇲభ.ఱ.భ.మఙഄభ.ఱ.భ.మ൯

మට൫ఙವᇲభ.ఱ.మ൯
మ
ା൫ఓವᇲభ.ఱ.మఙഄభ.ఱ.మ൯

మ
ା൫ఙವᇲభ.ఱ.మఙഄభ.ఱ.మ൯

మ
  

Solving ߩଵ.ହ.ଵ.ଶ,ଵ.ହ.ଶ using the parameters from Table 11-30, we get: 

஽ᇱభ.ఱ.మߤ஽ᇱభ.ఱ.భ.మߤ ൌ ሺ114ሻሺ157.5ሻ ൌ 17,955  

஽ᇱభ.ఱ.మߪ஽ᇱభ.ఱ.భ.మߪ஽ᇱభ.ఱ.భ.మ,஽ᇱభ.ఱ.మߩ ൌ ሺ0.75ሻሺ10.39ሻሺ7.50ሻ ൌ 58.46  

ఌ೅಺ሺభ.ఱ.మሻߤఌ೅಺ሺభ.ఱ.భ.భሻߤ ൌ ሺ0.9667ሻሺ1ሻ ൌ 0.9667  

ට൫ߪ஽ᇱభ.ఱ.భ.భ൯
ଶ
൅ ൫ߤ஽ᇱభ.ఱ.భ.భߪఌభ.ఱ.భ.మ൯

ଶ
൅ ൫ߪ஽ᇱభ.ఱ.భ.భߪఌభ.ఱ.భ.మ൯

ଶ
ൌ   ݀ݓ10.65

ට൫ߪ஽ᇱభ.ఱ.మ൯
ଶ
൅ ൫ߤ஽ᇱభ.ఱ.మߪఌభ.ఱ.మ൯

ଶ
൅ ൫ߪ஽ᇱభ.ఱ.మߪఌభ.ఱ.మ൯

ଶ
ൌ  so ,݀ݓ8.16

ଵ.ହ.ଵ.ଵ,ଵ.ହ.ଶߩ ൌ
ሺଵ଻,ଽହହାହ଼.ସ଺ሻሺ଴.ଽ଺଺଻ሻିଵ଻,ଽହହ

ሺଵ଴.଺ହሻሺ଼.ଵ଺ሻ
ൌ 0.5526  

Coincidently, the values for ߩଵ.ହ.ଵ.ଶ,ଵ.ହ.ଶ are the same, so  

ଵ.ହ.ଵ.ଶ,ଵ.ହ.ଶߩ ൌ
ሺଵ଻,ଽହହାହ଼.ସ଺ሻሺ଴.ଽ଺଺଻ሻିଵ଻,ଽହହ

ሺଵ଴.଺ହሻሺ଼.ଵ଺ሻ
ൌ 0.5526 . 

The correlation matrix for WBS 1.5’s subordinate elements is: 

૚.૞࣋ ൌ ൥
1 0.5793 0.5526

0.5793 1 0.5526
0.5526 0.5526 1

൩  

 ૚.૜.૛,૚.૞.૛࣋ ૚.૜.૛,૚.૞.૚.૚, and࣋

The second set of correlations defined in the NASA resource-loaded schedule are those 
defined between TI PDFs.  The correlations between independent cost PDFs affect the 



ANALYTIC METHOD FOR RISK ANALYSIS 

 
159 

 

correlation between WBS elements 1.3.2, 1.5.1.1, 1.5.1.2.  We need to calculate 
 ଵ.ଷ.ଶ,ଵ.ହ.ଶ.  Since there is no correlation between the durations of theseߩ ଵ.ଷ.ଶ,ଵ.ହ.ଵ.ଵ, andߩ

WBS elements,  

ଵ.ଷ.ଶ,ଵ.ହ.ଵ.ଵߩ ൌ
ாሾ௑భ.య.మ௑భ.ఱ.భ.భሿିாሾ௑భ.య.మሿாሾ௑భ.ఱ.భ.భሿ

ఙభ.య.మఙభ.ఱ.భ.మ
ൌ ாሾ௑భ.ఱ.భ.భ௑భ.ఱ.భ.మሿିఓభ.య.మఓభ.ఱ.భ.భ

ఙభ.య.మఙభ.ఱ.భ.భ
  

ଵܺ.ଷ.ଶ ൌ ൫ܦ′ଵ.ଷ.ଶ்ߝ஽భ.య.మ൯ሺܴଵ.ଷ.ଶሻ ൅    ூభ.య.మ்ߝ

ଵܺ.ହ.ଵ.ଵ ൌ ൫ܦ′ଵ.ହ.ଵ.ଵ்ߝ஽భ.ఱ.భ.భ൯൫ܴଵ.ହ.ଵ.ଵ்ߝூభ.ఱ.భ.భ൯  

ଵܺ.ଷ.ଶ ଵܺ.ହ.ଵ.ଵ ൌ ൣ൫ܦ′ଵ.ଷ.ଶ்ߝ஽భ.య.మ൯ሺܴଵ.ଷ.ଶሻ ൅   ூభ.ఱ.భ.భ൯்ߝ஽భ.ఱ.భ.భ൯൫ܴଵ.ହ.ଵ.ଵ்ߝଵ.ହ.ଵ.ଵ′ܦூభ.య.మ൧൫்ߝ

ଵܺ.ଷ.ଶ ଵܺ.ହ.ଵ.ଵ ൌ
ܴଵ.ଷ.ଶܴଵ.ହ.ଵ.ଵܦ′ଵ.ଷ.ଶܦ′ଵ.ହ.ଵ.ଵ்ߝ஽భ.య.మ்ߝ஽భ.ఱ.భ.భ்ߝூభ.ఱ.భ.భ ൅   ூభ.ఱ.భ.భ்ߝ஽భ.ఱ.భ.భ்ߝଵ.ହ.ଵ.ଵ′ܦூభ.య.మܴଵ.ହ.ଵ.ଵ்ߝ

Setting ܽ ൌ ܴଵ.ଷ.ଶܴଵ.ହ.ଵ.ଵ (a constant) we get: 

ଵܺ.ଷ.ଶ ଵܺ.ହ.ଵ.ଵ ൌ
ூభ.ఱ.భ.భ்ߝ஽భ.ఱ.భ.భ்ߝ஽భ.య.మ்ߝଵ.ହ.ଵ.ଵ′ܦଵ.ଷ.ଶ′ܦܽ ൅   ூభ.ఱ.భ.భ்ߝ஽భ.ఱ.భ.భ்ߝଵ.ହ.ଵ.ଵ′ܦூభ.య.మܴଵ.ହ.ଵ.ଵ்ߝ

ሾܧ ଵܺ.ଷ.ଶ ଵܺ.ହ.ଵ.ଵሿ ൌ
ூభ.ఱ.భ.భ൧்ߝ஽భ.ఱ.భ.భ்ߝ஽భ.య.మ்ߝଵ.ହ.ଵ.ଵ′ܦଵ.ଷ.ଶ′ܦൣܧܽ ൅ ܴଵ.ହ.ଵ.ଵܦൣܧ′ଵ.ହ.ଵ.ଵ்ߝ஽భ.ఱ.భ.భ்ߝூభ.ఱ.భ.భ்ߝூభ.య.మ൧  

Separating the correlated terms results in: 

ሾܧ ଵܺ.ଷ.ଶ ଵܺ.ହ.ଵ.ଵሿ ൌ
ூభ.ఱ.భ.భ൧்ߝൣܧ஽భ.ఱ.భ.భ൧்ߝ஽భ.య.మ்ߝൣܧଵ.ହ.ଵ.ଵሿ′ܦଵ.ଷ.ଶ′ܦሾܧܽ ൅

ܴଵ.ହ.ଵ.ଵܧሾܦ′ଵ.ହ.ଵ.ଵሿ்ߝൣܧ஽భ.ఱ.భ.భ൧்ߝൣܧூభ.ఱ.భ.భ்ߝூభ.య.మ൧  

ଵ.ଷ.ଶߤ ൌ $5,075,000.00	and ߪଵ.ଷ.ଶ ൌ $173,253.56	 

ଵ.ହ.ଵ.ଵߤ ൌ $18,366,666.67		and ߪଵ.ହ.ଵ.ଵ ൌ $2,088,349.29	 

Computing each product moment term  

ܽ ൌ ܴଵ.ଷ.ଶܴଵ.ହ.ଵ.ଵ ൌ ሺ$90,000.00ሻሺ$166,666.67	ሻ ൌ ܧ1.5 ൅ 10  

ଵ.ହ.ଵ.ଵሿ′ܦሾܧ ൌ 114, and ்ߝൣܧ஽భ.ఱ.భ.భ൧ ൌ 1  

Since ߩ஽ᇱభ.య.మ,஽ᇱభ.ఱ.భ.భ ൌ 0,  

ଵ.ହ.ଵ.ଵሿ′ܦଵ.ଷ.ଶ′ܦሾܧ ൌ   ஽ᇱభ.ఱ.భ.భߤ஽ᇱభ.య.మߤ

ଵ.ହ.ଵ.ଵሿ′ܦଵ.ଷ.ଶ′ܦሾܧ ൌ ሺ50.83ሻሺ114ሻ ൌ 5,795  
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஽భ.ఱ.భ.భ൧்ߝ஽భ.య.మ்ߝൣܧ ൌ ఌ೅ವభ.ఱ.భ.భߤఌ೅ವభ.య.మߤ ൌ 1  

ூభ.ఱ.భ.భ൧்ߝൣܧ ൌ 0.9667  

ூభ.య.మ൧்ߝூభ.ఱ.భ.భ்ߝൣܧ ൌ ఌ೅಺భ.ఱ.భ.భߤఌ೅಺భ.య.మߤ ൅ ఌ೅಺భ.ఱ.భ.భߪఌ೅಺భ.య.మߪఌ೅಺భ.య.మ,,೅಺భ.య.మߩ   

Using values from Table 11-30, we get: 

ூభ.య.మ൧்ߝூభ.ఱ.భ.భ்ߝൣܧ ൌ ሺ500,000ሻሺ0.9667ሻ ൅ ሺ0.3ሻሺ40,000ሻሺ0.0624ሻ ൌ 484,081.66  

Computing the product moment term using previously computed values results in: 

ሾܧ ଵܺ.ଷ.ଶ ଵܺ.ହ.ଵ.ଵሿ ൌ ሺ1.5ܧ ൅ 10ሻሺ5,795ሻሺ0.9667ሻ ൅ ሺ$166,666.67	ሻሺ114ሻሺ484,081.66ሻ  

ሾܧ ଵܺ.ଷ.ଶ ଵܺ.ହ.ଵ.ଵሿ ൌ ܧ9.32251 ൅ 13  

Computing the product of the means provides: 

ଵ.ହ.ଵ.ଵߤଵ.ଷ.ଶߤ ൌ ሺ$5,075,000.00ሻሺ$18,366,666.67	ሻ ൌ ܧ9.32108 ൅ 13  

ሾܧ ଵܺ.ହ.ଵ.ଵ ଵܺ.ହ.ଵ.ଶሿ െ ଵ.ହ.ଵ.ଵߤଵ.ଷ.ଶߤ ൌ $14,218,298,069.73	  

ଵ.ହ.ଵ.ଵߪଵ.ଷ.ଶߪ ൌ ܧ3.61814 ൅ 11  

ଵ.ଷ.ଶ,ଵ.ହ.ଵ.ଵߩ ൌ
ሺଽ.ଷଶଶହଵாାଵଷሻିሺଽ.ଷଶଵ଴଼ாାଵଷሻ

ଷ.଺ଵ଼ଵସாାଵଵ	
ൌ 0.0393  

Substituting the values from WBS 1.5.1.2 into the equation and solving we obtain  
ଵ.ଷ.ଶ,ଵ.ହ.ଵ.ଶߩ ൌ 0.0393.  The results of a 100,000-trial statistical simulation show 

ଵ.ଷ.ଶ,ଵ.ହ.ଵ.ଶߩ ൌ 0.0389, an excellent agreement. 

11.2.2.3 Statistical Summation of WBS Element Costs 
Once the correlation coefficients between correlated WBS elements have been computed, 
the total cost can be calculated through statistical summation.  The mean of total cost from 
Equation 4-10 is: 

μ୘ ൌ Eሾ∑ X୧
୬
୧ୀଵ ሿ ൌ ∑ EሾX୧ሿ

୬
୧ୀଵ ൌ ∑ μଡ଼౟

୬
୧ୀଵ 		

A simplified equation for calculating the variance of the total cost when dealing with the 
standard deviations of correlated (σୡ୭୰) and uncorrelated ሺσ୳୬ୡሻ WBS elements based on 
Equations 4-11 and 9-12 is Equation 11-3.  This relationship greatly simplifies the 
computation of variances of programs with many WBS elements by limiting the number of 
matrix multiplications required. 

 σ୘ଶ ൌ VarሺX୘ሻ ൌ ોࡵࢀ܋ܖܝો܋ܖܝ ൅ ો࣋ࢀܚܗ܋ોܚܗ܋ ,	where
ો܋ܖܝ	is a column vector of standard deviations of uncorrelated WBS 

11-3 
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elements with dimension 1xM,  
ોܚܗ܋	is a column vector of standard deviations of correlated WBS 
elements with dimension 1xN,  
  ,is the identity matrix with dimension MxM ࡵ
  is the correlation matrix with dimension NxN, and ࣋
ሺ ሻࢀ is the transpose operation 
 

We use the latter equation to account for the correlation between WBS elements 1.3.2, 
1.5.1.1, 1.5.1.2, and 1.5.2, whose correlation matrix is (in that row and column order): 

࣋ ൌ ൦

૚ 0.0393 0.0393 0.0000
0.0393 ૚ 0.5793 0.5526
0.0393 0.5793 ૚ 0.5526
0.0000 0.5526 0.5526 ૚

൪  

The results of the MOM and 100,000-trial Statistical Simulation Summation of the WBS 
Elements are shown in Table 11-32.  These results indicate very good agreement between 
the two methods.  Discrepancies in the results obtained using the two approaches are 
primarily caused by   approximations used in the calculation of workday statistics using the 
analytic method, inexact statistical sampling of correlated random variables by the 
statistical simulation, and difficulties of the statistical simulation when dealing with 
discrete risks (as discussed in Section 9.1.8). 

Table 11-32 Results of MOM and Statistical Simulation Summation of WBS Elements  

WBS  Analytic Method 100,000‐Trial Statistical Simulation

 ܆ૄ ો܆ ܆ૄ ો܆
1  $160,810,194.69  $11,333,411.24  $160,756,897.76  $10,050,372.90 

1.2  $20,782,813.74  $1,176,015.04  $20,730,787.20  $1,179,300.81

1.3  $9,141,666.67  $229,062.38  $9,141,657.73   $228,767.50 

1.3.1  $4,066,666.67  $149,842.51  $4,066,668.80   $149,839.56 

1.3.2  $5,075,000.00  $173,253.56  $5,074,988.93   $173,027.10 

1.4  $50,116,666.67  $1,517,626.47  $50,116,585.59   $1,514,678.61 

1.4.1  $0.00  $0.00  $0.00   $0.00 

1.4.2  $15,500,000.00  $987,658.22  $15,499,948.07   $986,900.52 

1.4.3  $0.00  $0.00  $0.00   $0.00 

1.4.4  $7,750,000.00  $493,829.11  $7,750,025.08   $494,218.56 

1.4.5  $12,400,000.00  $790,126.57  $12,399,988.36   $789,913.58 

1.4.6  $9,300,000.00  $592,594.93  $9,299,952.17   $591,903.15 

1.4.7  $5,166,666.67  $329,219.41  $5,166,671.91   $329,327.90 

1.5  $40,150,000.00  $3,495,228.26  $40,151,376.12   $3,276,044.29 

1.5.1  $27,550,000.00  $3,265,642.58  $27,551,339.35   $2,834,945.88 

1.5.1.1  $18,366,666.67  $2,088,349.29  $18,367,694.56   $2,097,256.41 
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WBS  Analytic Method 100,000‐Trial Statistical Simulation

 ܆ૄ ો܆ ܆ૄ ો܆
1.5.1.2  $9,183,333.33  $1,044,174.65  $9,183,644.79   $1,046,930.09 

1.5.2  $12,600,000.00  $652,916.53  $12,600,036.77   $653,556.59 

1.6  $29,719,047.62  $1,720,918.39  $29,718,882.73   $1,724,308.57 

1.6.1  $6,000,000.00  $908,480.87  $5,999,968.14   $908,846.37 

1.6.2  $8,266,666.67  $839,232.45  $8,266,635.33   $838,788.65 

1.6.3  $5,166,666.67  $524,520.28  $5,166,665.32   $524,447.49 

1.6.4  $10,285,714.29  $1,075,541.71  $10,285,613.94   $1,074,641.82 

1.7  $3,000,000.00  $900,000.00  $2,999,969.14   $900,141.94 

1.7.1  $3,000,000.00  $900,000.00  $2,999,969.14   $900,141.94 

2  $7,900,000.00  $10,478,546.08  $7,897,639.25   $8,785,656.92 

2.1  $3,100,000.00  $5,687,706.04  $3,098,858.74   $4,766,730.77 

2.2  $0.00  $0.00  $0.00   $0.00 

2.3  $4,800,000.00  $8,800,564.07  $4,798,780.51   $7,374,605.76 

 

11.2.2.4 PDF of Total Cost 
The PDF of the total cost can be approximated by a lognormal distribution or by 
computing the exact, mixed distribution.  The lognormal approximation is easily obtained, 
as it was for the schedule PDF, by computing the lognormal parameters ܲ and ܳ then 
deriving the percentile statistics for total cost.  Using Equations 4-5 and 4-6, with ߤ௑೅೚೟ ൌ

$160,810,256.90	and ߪ௑೅೚೟ ൌ $9,765,611.10	, ௑ܲ೅೚೟ ൌ 18.8939, and ܳ௑೅೚೟ ൌ 0.0607.  

The resulting plot of the lognormal approximation to the total schedule duration is shown 
in Figure 11-12. 

 

Figure 11-12 Lognormal Approximation of Total Cost 
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The PDF of the mixed distribution has a continuous distribution component and a discrete-
risks component. Since there are two risks in the discrete-risks component affecting the 
total cost (ܴଵ	and	ܴଷ), we will derive a set of risk-state statistics for each state.  There are 
2௡ ൌ 2ଶ ൌ 4 risk states with conditional outcomes.  Beginning with the risk states, ௜ܵ: 

ܵ଴ :	ܴଵ	and ܴଷ	do not occur. ܲሺܵ଴ሻ ൌ ሺ1 െ 0.3ሻሺ1 െ 0.3ሻ ൌ ሺ0.7ሻሺ0.7ሻ ൌ 0.49	

ଵܵ	:	ܴଵ	occurs and ܴଷ	does not occur. ܲሺ ଵܵሻ ൌ ሺ0.3ሻሺ1 െ 0.3ሻ ൌ ሺ0.3ሻሺ0.7ሻ ൌ 0.21	
ܵଶ	:	ܴଵ	does not occur and ܴଷ	occurs. ܲሺܵଶሻ ൌ ሺ1 െ 0.3ሻሺ	0.3ሻ ൌ ሺ0.7ሻሺ0.3ሻ ൌ 0.21	
ܵଷ	:	ܴଵ	and ܴଷ	occur. ܲሺܵଷሻ ൌ ሺ0.3ሻሺ	0.3ሻ ൌ 0.09 

ܴଵ	has two possible outcomes: the cost is zero if the risk does not occur and if the risk 
occurs, the cost is modeled by a triangular distribution ܶሺ$8ܯ, ,ܯ$10  also has	ܴଷ	ሻ.ܯ$13
two possible outcomes: the cost is zero if the risk does not occur and if the risk occurs, the 
cost is modeled by a triangular distribution ܶሺ$13ܯ, ,ܯ$15  .ሻܯ$20

Given these four possible outcomes, we have these states: 

ܵ଴ :	ܲሺܵ଴ሻ ൌ 0.49, ௌܺబ ൌ $0	

ଵܵ	:	ܲሺ ଵܵሻ ൌ 0.21 ; ௌܺభ ൌ ܶሺ$8ܯ, ,ܯ$10 	ሻܯ$13

ܵଶ	: ܲሺܵଶሻ ൌ 0.21; ௌܺమ ൌ ܶሺ$13ܯ, ,ܯ$15 	ሻܯ$20

ܵଷ	: ܲሺܵଷሻ ൌ 0.09 ; ௌܺయ ൌ ܶሺ$8ܯ, ,ܯ$10 ሻܯ$13 ൅ ܶሺ$13ܯ, ,ܯ$15  ሻܯ$20
 
The continuous distribution to which we combine these discrete risk states is composed of 
WBS Elements 1.1 to 1.7.  The resulting moments of the continuous distribution ሺܺ஼௢௡௧ሻ 
are: 

௑಴೚೙೟ߤ ൌ $152,860,068.75, and ߪ௑಴೚೙೟ ൌ $4,272,695.15	 

The statistics of the discrete-risk states (ߤ௑ವ೔ೞ೎and	ߪ௑ವ೔ೞ೎) are computed using the 

calculations of the moments of the triangular distributions and (in the case of	ܵଷ, which is a 
sum of triangular distributions) statistically summing them using Equations 4-10 and 4-11.  
The distributions of the triangular PDFs of the two risks are uncorrelated, so the standard 
deviation of the impact of state ܵଷ	is the square root of the sum of the squares of the 
standard deviations of the two triangular PDFs. The results are  

ܵ଴ :	ܲሺܵ଴ሻ ൌ ௑ವ೔ೞ೎ߤ ,0.49 ൌ ௑ವ೔ೞ೎ߪ ,$0 ൌ $0	

ଵܵ	:	ܲሺ ଵܵሻ ൌ ௑ವ೔ೞ೎ߤ ; 0.21 ൌ ௑ವ೔ೞ೎ߪ ,	$10,333,333.33 ൌ $1,027,402.33		

ܵଶ	: ܲሺܵଶሻ ൌ ௑ವ೔ೞ೎ߤ ;0.21 ൌ ௑ವ೔ೞ೎ߪ ,	$16,000,000.00 ൌ $1,471,960.14		

ܵଷ	: ܲሺܵଷሻ ൌ ௑ವ೔ೞ೎ߤ ; 0.09 ൌ ௑ವ೔ೞ೎ߪ ,	$26,333,333.33 ൌ $1,795,054.94		
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To create the mixed distribution of the project cost,	 ௑݂೘ሺݔሻ, we combine the continuous 

and discrete distributions using Equation 11-4.  ௑݂೘ሺݔሻ	represents the probability-of-

occurrence-weighted sum of the PDFs of the individual states. 

The probabilities of occurrence and statistics used in this operation are shown in Table 
11-33.   

Table 11-33 Mixed Distribution of Cost Statistics 

State  Risk  
Occurrence 

Prob.  ࢄࣆ ࢄ࣌  ࢄࡼ ࢄࡽ

ܵ଴  ܴଵതതത ∩ ܴଷതതത  0.49 $152,860,068.75  $4,272,695.15   18.8446  0.0290

ଵܵ  ܴଵ ∩ ܴଷതതത  0.21 $163,193,402.08  $4,394,482.83   18.9101  0.0269

ܵଶ  ܴଵതതത ∩ ܴଷ  0.21 $168,860,068.75  $4,519,136.03   18.9442  0.0268

ܵଷ  ܴଵ ∩ ܴଷ  0.09 $179,193,402.08  $4,634,452.08   19.0036  0.0259

 

The mixed distribution shown in Figure 11-13 is a plot of	 ௑݂೘ሺݔሻ	.  This is a multimodal 

PDF, and evidence of the discrete components are visible near the means of each state. 

 

Figure 11-13 Mixed Distribution of Total Cost 
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 ௑݂೘ሺݔሻ ൌ ∑ ௌ೔݌
ଷ
௜ୀ଴ ௑݂ೄ೔

ሺݔሻ , where 

 ௌ೔ = the probability of occurrence of state ௜ܵ݌

௑݂ೄ೔
ሺݔሻ ൌ	the PDF of state ௜ܵ 
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Figure 11-14 Mixed Distribution and Lognormal Approximation of Total Cost 

11.2.2.5 Comparison of Total Cost Results 
The statistics of the total cost (and their differences) computed using MOM and a 100,000-
trial statistical simulation are provided in Table 11-34.   

Table 11-34 Total Cost Results from Analytic Approach and Statistical Simulation 

  Computed Values  Difference 

Analytic  Statistical Simulation  Additive  Percent 

 ܆ૄ $160,810,256.90  $160,759,226.85  ‐$51,030.05)  ‐0.032%

ો܆  $9,765,611.10  $10,064,871.60  ‐$299,260.50)  ‐3.064%

 

11.2.3 Joint	Cost	and	Schedule	Distribution	
The joint cost and schedule distribution is modeled using a bivariate normal distribution as 
shown in Equation 11-5. 

The parameters of the lognormal marginal distributions are  

௑ߤ	 ൌ $160,810,194.69	, and ߪ௑ ൌ $11,333,411.24	 

஽ᇱߤ ൌ ஽ᇱߪ and ݀ݓ872.88 ൌ   ݀ݓ23.09
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ܮ݅ܤ  ቀሺ ଵܲ, ଶܲሻ, ൫ܳଵ, ܳଶ, ଵ,ଶ൯ቁߩ ൌ ௑݂,஽ᇱሺݔ, ݀ሻ ൌ
ଵ

ଶగொభொమටଵିఘభ,మ
మ ௫భ௫మ

݁ିቄ
భ
మ
௪ቅ	;			

where	ݓ ൌ ଵ

ଵିఘభ,మ
మ ൤ቀ௟௡

ሺ௫ሻି௉భ
ொభ

ቁ
ଶ
െ ଵ,ଶߩ2 ቀ

௟௡ሺ௫ሻି௉భ
ொభ

ቁ ቀ௟௡
ሺௗሻି௉మ
ொమ

ቁ ൅ ቀ௟௡
ሺௗሻି௉మ
ொమ

ቁ
ଶ
൨,	

ଵ,ଶߩ ൌ
ଵ

ொభொమ
ln ቂ1 ൅ ௑భ,௑మඥ݁ߩ

ொభ
మ
െ 1ඥ݁ொమ

మ
െ 1ቃ, and  

௑భ,௑మis the correlation coefficient between RVs ଵܺߩ and ܺଶ. 
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The correlation between the total cost and schedule PDFs is calculated using Equation 
11-6. 

It is important to note that there will actually be several correlation coefficients between 
the cost and schedule PDFs, since each state will have a different set of values in Equation 
11-6.  For purposes of this example, we will use the correlation of the combined states. 

The sum of the serialized schedule element durations for the NASA example is: 

ܦ ൌ ଵଵܦ ൅ ଵଶܦ ൅ ଵସܦ ൅ ሾଵହ,ଵଽሿܦ ൅ ଶ଴ܦ ൅ ሾଶଷ,ଶ଼ሿܦ ൅ ଶଽܦ ൅ ଷ଴ܦ ൅  ଷଶ, whereܦ

ሾଵହ,ଵଽሿܦ ൌ maxሺܦଵହ, ଵ଺ܦ ൅ ଷହܦ ൅ ,ଵ଻ܦ ଵ଺ܦ ൅ ଷହܦ ൅ ,ଵ଼ܦ ଵ଺ܦ ൅ ଷହܦ ൅  ଵଽሻ, andܦ

ሾଶଷ,ଶ଼ሿܦ ൌ ,ଶଷܦሺݔሾ݉ܽݔܽ݉ ଶସሻܦ ൅ ,ଶ଻ܦ ଶହܦ ൅   ଷ଺ሿܦ

If we eliminate tasks with ܫܥ ൌ 0 from	ܦ, the serialized schedule equation becomes 
Equation 11-7. 

The product of cost (ܺ) and duration (ܦ), which is a term required to calculate the 
correlation between them, is the rather large polynomial expression formed by: 

ܦܺ ൌ ሺ∑ ௜ܺ௜ୀா௅ ሻ൫ܦଵଵ ൅ ଵଶܦ ൅ ଵସܦ ൅ ଵ଺ܦ ൅ ଷହܦ ൅ ଵ଼ܦ ൅ ଶ଴ܦ ൅ ሾଶଷ,ଶ଼ሿܦ ൅ ଶଽܦ ൅ ଷ଴ܦ ൅

  ଷଶ൯ܦ

Since the numerator of the correlation equation,	ܧሾܺܦሿ െ  ሿ, represents theܦሾܧሾܺሿܧ
covariance terms, we only need to account for the correlated durations.  ܺ and ܦ are only 
correlated to each other through their durations, since rates and uncertainties are 
uncorrelated within the same WBS element.  We know the expectation of a squared 

duration is ܦൣܧ௝ܦ௝൧ ൌ ௝ܦൣܧ
ଶ൧ ൌ ஽ೕߤ

ଶ ൅ ஽ೕߪ
ଶ  

Its contribution to the numerator in the correlation equation will be: 

௝ܦൣܧ 
ଶ൧ െ ௝൧ܦଶൣܧ ൌ ஽ೕߪ

ଶ . 

This means that any individual task,	݆, on the critical path with ܫܥ௝ ൌ 1 will have 

௑,஽ߩ  ൌ
ாሾ௑஽ሿିாሾ௑ሿாሾ஽ሿ

ఙ೉ఙವᇲ
ൌ ாሾ௑஽ሿିఓ೉ఓವᇲ

ఙ೉ఙವᇲ
; where 

ܺ ൌ ∑ ௜ܺ௜ୀ௅௅ௐ஻ௌ ,	the sum of the costs of the lowest-level WBS elements,  ௜ܺ 	
ܦ ൌ ∑ ௝௝ୀௌௌாܦ , the sum of the serialized schedule elements (SSE), ܦ௝ 
 

11-6

ܦ  ൌ ଵଵܦ ൅ ଵଶܦ ൅ ଵସܦ ൅ ଵ଺ܦ ൅ ଷହܦ ൅ ଵ଼ܦ ൅ ଶ଴ܦ ൅ ሾଶଷ,ଶ଼ሿܦ ൅ ଶଽܦ ൅
ଷ଴ܦ ൅ ሾଶଷ,ଶ଼ሿܦ ଷଶ, whereܦ ൌ ,ଶଷܦሺݔሾ݉ܽݔܽ݉ ଶସሻܦ ൅ ,ଶ଻ܦ ଶହܦ ൅  ଷ଺ሿܦ
 

11-7 
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஽ೕ,஽ೕߩ ൌ 1,	and if it is uncorrelated to other tasks, its contribution to the numerator of the 

correlation equation will be represented simply by ߪ஽ೕ
ଶ.  We also know the expectation of 

two correlated durations is: 

௝൧ܦ௞ܦൣ	ܧ ൌ ஽ೕߤ஽ೖߤ ൅   ஽ೕߪ஽ೖߪ஽ೖ,஽ೕߩ

Their contribution to the numerator in the correlation equation will be: 

௝൧ܦ௞ܦൣܧ െ ௝൧ܦൣܧ௞ሿܦሾܧ ൌ ஽ೕߤ஽ೖߤ ൅ ஽ೕߪ஽ೖߪ஽ೖ,஽ೕߩ െ ஽ೕߤ஽ೖߤ ൌ   ஽ೕߪ஽ೖߪ஽ೖ,஽ೕߩ

The elements of the product	ܺܦ	that will remain in the numerator of the correlation 
equation are:  

1) ܴ௜൫ߪ஽ᇲ೔൯
ଶ
ఌ೅ವ೔ఓഄ೅಺೔ߤ

, for tasks ݅ ൌ ሾ11, 12,14,16,20,29,30,32ሿ,  

2) ܴ௜ߪ஽ᇲ೔ߤఌ೅ವ೔ఓഄ೅಺೔
ቀߩ஽ᇲ೔,஽ᇲೕߪ஽ᇲೕቁ, for tasks	݅ ൌ ሾ7, 23,24,25,27ሿ, and	݆ ൌ ൣ7, ሾ23,28ሿ൧, 

and  ܴ௜ߪ஽ᇲ೔ߤఌ೅ವ೔ఓഄ೅಺೔
is substituted with ܲሺܴଷሻߪோయ for task 36.65 

The first term is quite simple to calculate and results in: 23,476,686.51. 

The second term is calculated through the matrix multiplication of the matrix of correlation 
coefficients between ݅ and ݆ shown in Figure 11-15. 

 

Figure 11-15 Matrix of Correlation Coefficients between WBS Elements ࢏ and Tasks ࢐ 

                                                 

65 Task 35 does not have a cost impact, so it does not appear in the term of the product moment. 

 D7 D11 D12 D16 D35 D18 D20 D[23,28] D29 D30 D32

7 1 0.1350 0.0675 0.1620 0.4469 0.4321 0.2430 0.5613 0.2670 0.3197 0.1299

11 0.1350 1 0 0 0 0 0 0 0 0 0

12 0.0675 0 1 0 0 0 0 0 0 0 0

16 0.1620 0 0 1 0 0 0 0 0 0 0

35 0.4469 0 0 0 1 0 0 0 0 0 0

18 0.4321 0 0 0 0 1 0 0 0 0 0

20 0.2430 0 0 0 0 0 1 0 0 0 0

23 0.4500 0 0 0 0 0 0 0.2661 0 0 0

24 0.4500 0 0 0 0 0 0 0.2661 0 0 0

25 0.3248 0 0 0 0 0 0 0.3865 0 0 0

27 0.2598 0 0 0 0 0 0 0.1536 0 0 0

29 0.2670 0 0 0 0 0 0 0 1 0 0

30 0.3197 0 0 0 0 0 0 0 0 1 0

32 0.1299 0 0 0 0 0 0 0 0 0 1

36 0.3248 0 0 0 0 0 0 0.6168 0 0 0
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The resulting calculations give us the numerator of the correlation between cost and 
schedule, which is 120,005,239.09. 

We will use the duration statistics (in wd) to calculate the correlation between cost and 
schedule.  When we use them in the correlation equation, we get:  

௑,஽ߩ ൌ
ሿܦሾܺܧ െ ሿܦሾܧሾܺሿܧ

஽ᇱߪ௑ߪ
ൌ

	120,005,239.09		

ሺ9,765,611.10	ሻሺ23.09ሻ
ൌ 	0.5322	 

The resulting calculations show, for the combined risk states,	ߩ௑,஽ ൌ 0.5322	.  The results 

from the 100,000-trial statistical simulation show	ߩ௑,஽ ൌ 0.5597 , which is very similar. 

Using Equation 11-5, we are able to provide a three-dimensional plot of the bivariate 
lognormal PDF of cost and schedule using: 

௑ߤ ൌ ௑ߪ ,	$160,810,256.90 ൌ $9,765,611.10	 

஽ᇱߤ ൌ 872.88 wd, ߪ஽ᇱ ൌ 23.09 wd. 

 

Figure 11-16 Bivariate Lognormal Probability Density of Cost and Schedule 

The mixed distribution of cost and schedule relies on the distributions of the individual states, ௜ܵ, 
whose parameters are provided in Table 11-35.  The state in which no risks occur,	ܵ0	, accounts for 

41.65% of the outcomes.  This state has cost and schedule means of $152,860,068.75 and 859.90 
wd, respectively.  The other states have appreciably lower probabilities of occurrence, but their 
means represent larger values.  
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Table 11-35 Lognormal Distribution Parameters of Joint Cost and Schedule 
Probability States 

 Risk Occurrence ࢏ࡿ ࢄࣆ ሻ࢏ࡿሺࡼ ࢄ࣌  ᇱࡰ࣌ ᇱࡰࣆ
ܵ଴ ܴଵതതത ∩ ܴଶതതത ∩ ܴଷതതത 0.4165 $152,860,068.75  $4,272,695.15  859.90  19.33 

ଵܵ ܴଵതതത ∩ ܴଶതതത ∩ ܴଷ 0.1785 $168,860,068.75  $4,519,136.03  882.00  19.44 

ܵଶ௔ ܴଵതതത ∩ ܴଶ௔ ∩ ܴଷതതത 0.0245 $152,860,068.75  $4,272,695.15  874.90  19.33 

ܵଶ௕ ܴଵതതത ∩ ܴଶ௕ ∩ ܴଷതതത 0.0245 $152,860,068.75  $4,272,695.15  884.90  19.33 

ܵଶ௖ ܴଵതതത ∩ ܴଶ௕ ∩ ܴଷതതത 0.0245 $152,860,068.75  $4,272,695.15  899.90  19.33 

ܵଷ௔ ܴଵതതത ∩ ܴଶ௔ ∩ ܴଷ 0.0105 $168,860,068.75  $4,519,136.03  897.00  19.44 
ܵଷ௕ ܴଵതതത ∩ ܴଶ௕ ∩ ܴଷ 0.0105 $168,860,068.75  $4,519,136.03  907.00  19.44 
ܵଷ௖ ܴଵതതത ∩ ܴଶ௖ ∩ ܴଷ 0.0105 $168,860,068.75  $4,519,136.03  922.00  19.44 
ܵସ ܴଵ ∩ ܴଶതതത ∩ ܴଷതതത 0.1785 $163,193,402.08  $4,394,482.83  859.90  19.33 

ܵହ ܴଵ ∩ ܴଶതതത ∩ ܴଷ 0.0765 $179,193,402.08  $4,634,452.08  882.00  19.44 

ܵ଺௔ ܴଵ ∩ ܴଶ௔ ∩ ܴଷതതത 0.0105 $163,193,402.08  $4,394,482.83  874.90  19.33 

ܵ଺௕ ܴଵ ∩ ܴଶ௕ ∩ ܴଷതതത 0.0105 $163,193,402.08  $4,394,482.83  884.90  19.33 

ܵ଺௖ ܴଵ ∩ ܴଶ௖ ∩ ܴଷതതത 0.0105 $163,193,402.08  $4,394,482.83  899.90  19.33 

ܵ଻௔ ܴଵ ∩ ܴଶ௔ ∩ ܴଷ 0.0045 $179,193,402.08  $4,634,452.08  897.00  19.44 
ܵ଻௕ ܴଵ ∩ ܴଶ௕ ∩ ܴଷ 0.0045 $179,193,402.08  $4,634,452.08  907.00  19.44 
ܵ଻௖ ܴଵ ∩ ܴଶ௖ ∩ ܴଷ 0.0045 $179,193,402.08  $4,634,452.08  922.00  19.44 

 

The joint PDF formed is a mixture distribution formed by the probability-weighted joint 
PDFs of each state (Figure 11-17).  Note the variance of the mixed distribution is much 
greater than that of any of the individual states.  This is due to the variance contribution of 
each state’s distance to the mean of the mixed distribution. 

 

Figure 11-17 Joint Probability Density of Cost and Schedule 
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The probability that the project will cost equal to or less than the point estimate of cost 
 is evaluated (ܦܧܲ) and will be completed on or before the schedule point estimate (ܺܧܲ)
through integration of the following joint cost and schedule PDF:  

ܲሾ݀ ൑ ;ܦܧܲ ݔ ൑ ሿܺܧܲ ൌ ׬ ׬ ஽݂,௑ሺ݀, ሻݔ
PED

଴
	ܺܧܲ

଴   ݔ݀ܦ݀

We can set the upper limits of the integral above using the point estimate for cost,	ܲܺܧ ൌ
$151,500,000, and the point estimate for schedule, ܲܦܧ ൌ 1173ܿ݀ or 840݀ݓ.  

Since the distribution ஽݂,௑ሺ݀,  ሻ is a mixture distribution with 16 possible states, we canݔ

express the joint probability as the probability-weighted sum:  

ܲሾ݀ ൑ ;ܦܧܲ ݔ ൑ ሿܺܧܲ ൌ ∑ ܲሺ ௜ܵሻ ׬ ׬ ஽݂,௑ௌ೔
ሺ݀, ሻݔ

PED

଴
	ܺܧܲ

଴ ଻௖ݔ݀ܦ݀
௜ୀ଴ ൌ ∑ ܲሺ ௜ܵሻܬௌ೔

଻௖
௜ୀ଴   

This results in the set of sixteen joint probabilities (ܲሺ ௜ܵሻ) and probability-weighted joint 
probabilities (ܲሺ ௜ܵሻܬௌ೔), as shown in Table 11-36.  The sum of ܲሺ ௜ܵሻܬௌ೔ , which represents 

the joint probability of the point estimates of cost and schedule, is 0.04766, or 4.766%, 
which is extremely low.  ܲሺܵ଴ሻܬௌబis 4.630%, which accounts for nearly all of the joint 

probability.  This is because state ܵ଴	has the highest joint probability density at the ݔ, ݀ 
coordinates of the point estimates of cost and schedule duration.  The marginal cost and 
schedule variances of all of the states are similar; however the means of the risk-included 
states are all higher than that of	ܵ଴. 

Table 11-36 Joint Probabilities of Possible Risk States 

Risk Occurrence ࢏ࡿ ࢏ࡿࡶ ሻ࢏ࡿሺࡼ ࢏ࡿࡶሻ࢏ࡿሺࡼ  
ܵ଴ ܴଵതതത ∩ ܴଶതതത ∩ ܴଷതതത 0.4165 1.11E‐01 0.046304804 

ଵܵ ܴଵതതത ∩ ܴଶതതത ∩ ܴଷ 0.1785 1.37E‐05 2.45409E‐06 

ܵଶ௔ ܴଵതതത ∩ ܴଶ௔ ∩ ܴଷതതത 0.0245 2.87E‐02 0.000704228 

ܵଶ௕ ܴଵതതത ∩ ܴଶ௕ ∩ ܴଷതതത 0.0245 8.09E‐03 0.000198291 

ܵଶ௖ ܴଵതതത ∩ ܴଶ௕ ∩ ܴଷതതത 0.0245 6.75E‐04 1.65497E‐05 

ܵଷ௔ ܴଵതതത ∩ ܴଶ௔ ∩ ܴଷ 0.0105 4.41E‐06 4.62865E‐08 

ܵଷ௕ ܴଵതതത ∩ ܴଶ௕ ∩ ܴଷ 0.0105 1.30E‐06 1.36871E‐08 

ܵଷ௖ ܴଵതതത ∩ ܴଶ௖ ∩ ܴଷ 0.0105 9.49E‐08 9.9621E‐10 

ܵସ ܴଵ ∩ ܴଶതതത ∩ ܴଷതതത 0.1785 2.33E‐03 0.000415305 

ܵହ ܴଵ ∩ ܴଶതതത ∩ ܴଷ 0.0765 4.34E‐11 3.31634E‐12 

ܵ଺௔ ܴଵ ∩ ܴଶ௔ ∩ ܴଷതതത 0.0105 1.28E‐03 1.34409E‐05 

ܵ଺௕ ܴଵ ∩ ܴଶ௕ ∩ ܴଷതതത 0.0105 6.18E‐04 6.48392E‐06 

ܵ଺௖ ܴଵ ∩ ܴଶ௖ ∩ ܴଷതതത 0.0105 1.11E‐04 1.1689E‐06 

ܵ଻௔ ܴଵ ∩ ܴଶ௔ ∩ ܴଷ 0.0045 3.29E‐11 1.48011E‐13 

ܵ଻௕ ܴଵ ∩ ܴଶ௕ ∩ ܴଷ 0.0045 2.08E‐11 9.37364E‐14 

ܵ଻௖ ܴଵ ∩ ܴଶ௖ ∩ ܴଷ 0.0045 5.63E‐12 2.53355E‐14 
Total   1.0000 0.04766
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12 Summary  
This report presents an analytic (i.e., a non-simulation based) method of quantitative cost 
and schedule risk analysis building on analytic techniques of applied probability and 
statistics.  The analytic method provides near-instantaneous results with exact statistics 
such as mean and variance of total cost and total schedule duration.   It capitalizes on the 
fact that the structures of both cost and schedule estimates define mathematical problems 
to be solved through the use of applied probability.  In this report we provide the 
mathematics required to perform the task of 1) calculating the uncertainty of an estimate, 
2) determining the risk from this uncertainty and a point estimate.   

While much of the mathematics of applied probability used in this report are publicly 
available through journal publications, the authors have derived methods and formulae for 
functional correlation and application of discrete risks that have never been published 
before.  Therefore the report provides a very unique set of mathematics useful in the 
analytic assessment of cost and schedule uncertainty and risk. 

The report includes several quantitative examples, including two example estimates, where 
the results obtained using the analytic method compare well with those results obtained 
through statistical simulation.  In cases where large-tailed distributions were involved in 
the analysis (e.g., when discrete risks are used in an estimate or when we wish to find the 
product of two or more RVs) we found simulations require very large number of trials and 
often did not provide correct or even stable answers from run to run. 

Given the excellent results obtained through this research, additional applications of the 
analytic method are recommended for use in risk analysis, estimating relationship 
development and probabilistic cost and schedule estimating. 
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13 Conclusions and Recommendations 

13.1 Conclusions	
In the course of this research, perhaps the most daunting task was how to perform analytic 
cost risk analysis using analogies and cost-on-cost factors.  On the surface, these cost 
estimating methods are simple and easy to understand, but they have much larger, more 
complicated, and perhaps even sinister implications when treating them probabilistically.   

The first issue is how to model probability distribution of an analogy, which is discussed in 
Section 3.2.2.2.  Without specifying the analogy as the mean or as a particular percentile of 
the PDF, the distribution parameters are difficult to calculate.  As pointed-out in the 
literature (Flynn, Braxton, Garvey, & Lee, 2012), specifying a percentile value for an 
analogy reduces the problem enormously. 

The second issue is the difficulty in proper derivation and use of the cost-dependent CER 
or factor.  Anderson and Covert (Reducing Systemic Errors in Cost Models, 2008), 
(Regression of Cost Dependent CERs, 2002) discuss how to properly develop these factors 
– which is correct, but not the current industry norm.  Additionally, the use of cost-
dependent CERs in a probabilistic uncertainty analysis requires the calculation of the 
statistics of the product of the individual uncertainties.  Calculating the moments of the 
product of two lognormal distributions is a difficult task to perform analytically and is 
particularly difficult for statistical simulations to do correctly and consistently from one 
simulation run to another.  The analyst understanding the probabilistic implications of 
using cost-dependent CERs in an estimate will gain a healthy respect for these functions 
bordering on a strong dislike of them. 

The final conclusions we draw from this research are that analytic methods provide exact, 
near-instantaneous results in cost and schedule (and joint cost and schedule) uncertainty 
analysis.  The mathematics used in the analysis require a significant non-recurring set-up 
time and are best suited for models that have a defined WBS, such as the NASA/Air Force 
Cost Model (NAFCOM), the NASA Instrument Cost Model (NICM) and  the Unmanned 
Space Vehicle Cost Model (USCM).  The methods provided in this report would be a great 
improvement to the performance of the risk analysis capabilities of these models. 

13.2 Recommendations	
The following set of recommendations provides avenues for continuing research in the area 
of applied probability with applications to probabilistic cost and schedule risk analysis.  
This research will improve the understanding of cost and schedule estimating through the 
application of uncertainty in our estimates, which are uncertain predictions of future 
events.   
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13.2.1 Evaluating	Statistical	Simulations	
This research provides many examples whereby the exact statistics of RVs and functions 
of dependent RVs are compared to the results from statistical simulations. In some cases, 
particularly when computing the product of two lognormal random variables and when 
discrete risks are included in an estimate, the results of the statistical simulation are not 
close enough approximations to ignore simulation error.  The ability to extract statistical 
data from simulations is important because it allows the analyst to determine how the 
simulation arrived at a particular set of results.  We recommend developing a small set of 
test cases and experiments to determine the quality of statistical simulation tools that can 
be compared to the exact values computed with the equations and methods presented in 
this report. 

13.2.2 Using	Estimating	Methods	
The results of this research have indicated that estimates relying on methods such as build-
up approaches and direct analogies may require additional cost and schedule risks to be 
included in them.  Estimates using multiple scaled actuals or CERs that are created from a 
database of actual costs and schedule durations from similar programs require fewer risks 
to be included, presumably because the actual costs and schedule durations in the database 
will include risks that have occurred.  We recommend performing a study that compares 
the risk-estimating ability of different estimating methods to determine whether or not 
using estimating methods derived from multiple scaled actuals is a better predictor of 
estimating uncertainty. 

13.2.3 Basis	of	Estimate	Credibility	
Basis of estimate (BOE) credibility can be enhanced by use of multiple scaled actuals / 
CERs as either a primary or secondary estimating method.  BOEs based on expert 
judgment and analogies require inclusion of discrete risks to account for missing risks in 
the estimate.  Discrete risk formulations such as those described in Section 9 provide a 
method of accounting for discrete risks and the uncertainty due to them.  BOEs based on 
CERs or multiple scaled actuals require fewer discrete risks to be applied to the estimate 
and provide a more substantive estimate.  

13.2.4 Developing	Cost	Models	
CER regression techniques have traditionally been limited to curve fitting of vectors of 
discrete dependent variables (cost) with vectors of discrete independent variables (cost 
drivers) as shown in Figure 13-1.   
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Figure 13-1 Regression of Discrete Variables 

We assume the regression variables are discrete and non-random in nature; however, errors 
in both the dependent and independent variables can arise in the data collection and 
normalization process (Figure 13-2). Error-in-variables (EIV) regression techniques can be 
employed to find appropriate CERs with errors in either the dependent or independent 
variables or even when both are random variables (Covert R. P., 2006).66 Using the 
analytic method in the CER development process makes a non-simulation-based EIV 
regression technique feasible and allows the CER developer to instantaneously see the true 
error effects of CER regressions on cost model errors. 

 

 

Figure 13-2 Regression of Random Variables 

13.2.5 Improving	Cost	and	Schedule	Risk	Tools	
Cost models such as NAFCOM, NICM, USCM and the Aerospace Small Satellite Cost 
Model (SSCM) are all good candidates for implementing the analytic methods of 
uncertainty analysis shown in this report. 

                                                 

66 Covert, R., “Errors-In-Variables Regression”, Joint SSCAG/EACE/SCAF Meeting, London, UK, 
September 19-21, 2006. 
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Currently, NAFCOM uses a two-step process to model cost risk since the methods and 
equations for calculating functional correlation were unknown at the time NAFCOM 
implemented its cost risk analysis method based on FRISK.  In the first step, uncertainty is 
calculated for the prime mission product (PMP).  In the second step, uncertainty for cost-
on-cost functions such as System Engineering, Integration Assembly & Test is calculated.  
We recommend replacing the method of CRA in NAFCOM to instantaneously calculate 
exact means and variances of total cost distributions in a single-step approach using the 
methods proposed in this report rather than through a two-step approach.  This will provide 
exact answers and increase computational efficiency.  

13.2.6 Time‐Phasing	a	Resource‐Loaded	Schedule	
A natural extension of the second example problem in this report is to include time-
phasing of a resource-loaded cost and schedule estimate.  Using what we have learned 
about using probability distributions of cost and schedule duration (i.e., uniform, 
triangular, beta), we can apply the same principles to distributions of resources over time.  
The resulting information that could be obtained from a time-phased, resource-loaded 
schedule estimate will be a multivariate distribution of probability with respect to cost, 
schedule and time.  Combining these in a probabilistic estimate would allow the analyst 
to compute joint probability/resource-loaded cost and schedule estimates. Conditional 
values of cost and schedule duration would be easily obtained as well as the joint 
probability distribution. 

13.2.7 Allocating	Schedule	Margin	
Allocating margins to schedule tasks (or groups of tasks) is important to ensure projects 
do not overrun their schedules.  Several methods have been proposed that use the results 
of statistical simulations to reverse-and-forward-allocate schedule margin.  These 
methods start with a confidence level of the probabilistic finish date and back-allocate 
schedule reserve to tasks along the critical path to the starting task. Then the schedules 
with reserve are recalculated to compute the new point estimate of the finish date. 

Book (2006) proposed a method of cost risk allocation based on the “needs” of particular 
WBS elements required to achieve a particular confidence level.67  This method has not 
been applied to schedule estimating prior to this report, to our knowledge, since the 
effective linearization of the schedule network problem has not been widely published.  
We believe that “linearized” schedule networks such as the one demonstrated in Section 
11.2 provide the necessary mathematical structure to allow schedule allocation based on 
need.  We propose developing a risk allocation method using these principles.  

  
                                                 

67 Book, S. A. (2006). Allocating Risk Dollars Back to WBS Elements. ISPA/SCEA Joint Conference and 
Training Workshop. Seattle, WA. 
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14 Acronyms, Symbols and Definitions 

14.1 Acronyms	
AIAA American Institute of Aeronautics and Astronautics 
ADACS Attitude determination and control system 
AGE Aerospace ground equipment 
ATP Authority to proceed 
BOE Basis of Estimate 
BOLP Beginning-of-life power 
cd Calendar days 
CDF Cumulative distribution function 
CDF-1 Inverse cumulative distribution function 
C&DH Command and data handling 
CDR Critical Design Review 
CER Cost estimating relationship 
CI Criticality index 
CMF Cumulative mass function 
CRA Cost risk analysis 
CTV Contribution to variance 
EIV Errors-in-Variables  
FGM Farlie-Gumbel-Morgenstern 
FRISK Formal Risk Assessment of System Cost 
GFLOPs Giga (billions of) floating point operations per second 
IA&T Integration, assembly and test 
IEEE Institute of Electrical and Electronics Engineers 
iff If and only if 
JACS Joint Analysis of Cost and Schedule 
JCS Joint cost and schedule 
LLWBS Lowest-level work breakdown structure [element] 
LOOS Launch and orbital operations support 
MOM Method of moments 
NASA National Aeronautics and Space Administration 
NAFCOM NASA/Air Force Cost Model 
PDF Probability density function 
NICM NASA Instrument Cost Model 
PDR Preliminary Design Review 
PM Project management 
PMF Probability mass function 
PMP Prime mission product 
ROR Risk and opportunities register 
RV Random variable 
SEITPM Systems engineering, integration and test, and program management  
SOS System-of-Systems 
TCS Thermal control system 
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TD Time-dependent  
TI Time-independent 
TTC Telemetry, tracking and command/control 
USCM Unmanned Space Vehicle Cost Model 
UV Ultraviolet 
WBS Work breakdown structure 
wd Workdays 
WRT With respect to 
 

14.2 Symbols	
ܽ, ܾ, ܿ, ݀ Coefficients ܽ through ݀  

݁ Naperian base 
 ௜ Error iߝ

݂, ݃, ݄ Functions 
݅, ݆, ݇, ݈ Indices ݅ through ݈ 
݉, ݊ Counters 
 The probability a particular event occurs ݌
 ௝ Risk impact jܦ
ܲ, ܳ Lognormal shape parameters 
 ሾܺሿ Expectation of Xܧ
 Difference of two means ߤߜ
 Difference of two standard deviations ߪߜ
 Duration in workdays ′ܦ
 Finish date in consecutive calendar days ′ܨ

௑݂ሺݔሻ, ݃௑ሺݔሻ PDFs of ௑݂ and ݃௑ over x 
,ሻݔ௑ሺܨ  ሻ CDFs of ௑݂ and ݃௑ݔ௑ሺܩ
,ሺܺݔܽܯ ܻሻ Maximum of X and Y 
 ሺܺሻ Variance of Xݎܸܽ

,ሺܺݎݎ݋ܥ ܻሻ Pearson correlation of RVs X and Y 
,ሺܺݒ݋ܥ ܻሻ Covariance of X and Y 

 ௑,௝ Pearson correlation of RVs X and Yߩ
 ௑௒ Covariance of X and Yߪ
 Mean of X ߤ
௞ߤ
ᇱ  ݇௧௛ Raw moment of X 
 ௑ Standard deviation of Xߪ
 ௑ଶ Variance of Xߪ

ܷሺܪ,ܮሻ Uniform distribution defined by L and H 
ܶሺܪ,ܯ,ܮሻ Triangular distribution defined by L, M and H 
ܰሺߤ,  ߪ and ߤ ሻ Normal distribution defined byߪ
,ሺܲܮ ܳሻ Lognormal distribution defined by P and Q 

,ߙሺܤ ,ߚ ,ܮ ,ߙ ሻ Beta distribution defined by shape parametersܪ  and ,ߚ
limits ܮ,  ܪ
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integer	of	݆	bit	of	value	௜,௝ Binaryߛ ݅ 
ܴ௜ Risk ݅ 
 ௑,௒ Linear (Pearson) correlation coefficient for X and Yߩ
 ௑,௒௦ Rank (Spearman) correlation coefficient for X and Yߩ

௜ܵ [Risk] state ݅ 
߮ PDF of Standard Normal Distribution 
Φ CDF of Standard Normal Distribution 
 Skewness ݒ
 Kurtosis ߢ
∩ Boolean “and” 
ܴనഥ  Boolean “not” of risk i 
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16 Appendices 

16.1 Appendix	A	–	Probability	Distributions	

16.1.1 Uniform	Distribution	
The uniform distribution is defined by two parameters: The minimum possible value (L), 
and the maximum possible value (H).  

 

Figure 16-1 Uniform Distribution 

The PDF of the uniform distribution ܷሺܪ,ܮሻ is: 

 
௑݂ሺݔሻ ൌ

ଵ

ሺுି௅ሻ
, ݂݅ ܮ ൑ ݔ ൑   ܪ

 

16-1 

The CDF of the uniform distribution ܷሺܪ,ܮሻ is: 

 

ሻݔ௑ሺܨ ൌ ൞

0 , ݂݅ ݔ ൏ ܮ
ሺ௫ି௅ሻ

ሺுି௅ሻ
, ݂݅ ܮ ൑ ݔ ൑ ܪ

1 , ݂݅ ݔ ൐ ܪ
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Its mean, or expected value, E(X), is: 

ሺܺሻܧ  ൌ ௅ାு

ଶ
  

 

16-3 

And its variance, Var(X), is: 

ሺܺሻݎܸܽ  ൌ ଵ

ଵଶ
ሺܪ െ   ሻଶܮ

 

16-4 

Higher order moments such as skewness and kurtosis are: 

ሺܺሻݓ݁݇ܵ  ൌ 0  16-5 
ሺܺሻݐݎݑܭ  ൌ െ6/5 

 
16-6 
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16.1.2 Triangular	Distribution	
The triangular distribution is defined by three parameters, the lowest possible value (L), the 
mode (M), and the highest possible value (H).  

The PDF of the triangular distribution ܶሺܪ,ܯ,ܮሻ is: 

 

௑݂ሺݔሻ ൌ ቐ

ଶሺ௫ି௅ሻ

ሺுି௅ሻሺெି௅ሻ
݂݅ ܮ ൑ ݔ ൏ ܯ

ଶሺுି௫ሻ

ሺுି௅ሻሺுିெሻ
݂݅ ܯ ൑ ݔ ൑ ܪ
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Figure 16-2 Triangular Distribution 

If X is a triangular random variable, then its mean, or expected value, E(X), is:  

ሺܺሻܧ  ൌ
ሺ௅ାெାுሻ

ଷ
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its variance, Var(X), is: 

 
ሺܺሻݎܸܽ ൌ

1
18

ሾሺܯ െ ܯሻሺܮ െ ሻܪ ൅ ሺܪ െ  ሻଶሿܮ
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Higher order moments such as skewness and kurtosis are: 

ሺܺሻݓ݁݇ܵ  ൌ √ଶሺ௅ାுିଶெሻሺଶ௅ିுିெሻሺ௅ିଶுାெሻ

ହඥሺ௅మାெమାுమି௅ுି௅ெିெுሻయ
  16-10 

ሺܺሻݐݎݑܭ  ൌ െ3/5 
 

16-11 

16.1.3 Normal	Distribution	
The normal PDF is uniquely defined by the parameters ߤ and ߪ.  

The normal distribution ܰሺߤ,  :ሻ is defined by the following PDFߪ

 
௑݂ሺݔሻ 	ൌ 	

ଵ

√ଶగఙ
݁
ିቊభ

మ
ቈ൤ሺ೟షഋሻ

మ

഑మ
൨቉ቋ
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Figure 16-3 Normal Distribution from (Garvey, 2000) 

 

The CDF of the normal distribution is often of interest, since it enables calculation of the 

percentiles of the distribution.  The CDF of the normal distribution is defined as follows: 
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Higher order moments such as skewness and kurtosis are: 

ሺܺሻݓ݁݇ܵ  ൌ 0 16-14 
ሺܺሻݐݎݑܭ  ൌ 3 

 
16-15 

 

16.1.4 Lognormal	Distribution	
A lognormal random variable is the exponentiation of a normal random variable. Because 
the lognormal random variable (X) and the normal random variable (Y) are related, their 
means and standard deviations are also related. 
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Figure 16-4 Transformation of Lognormal Distribution 

 

Other important statistics associated with the lognormal distribution are the mode and 

median: 

 

ሺܺሻ݁݀݋ܯ  ൌ ݁ఓೊିఙೊ
మ
ൌ ݁௉ିொ

మ
 16-16 

ሺܺሻ݊ܽ݅݀݁ܯ  ൌ ݁ఓೊ ൌ ݁௉  
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The PDF of the lognormal distribution is: 
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and the CDF of the lognormal distribution is: 

 
ሻݔ௑ሺܨ ൌ ܲሺܺ ൑ ሻݔ ൌ ׬
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௫
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16.1.5 Beta	Distribution	

16.1.5.1 Standard Beta Distribution 
The standard beta distribution,	ܽݐ݁ܤሺߙ,  ߚ and ߙ ,ሻ, is defined by two shape parametersߚ
over the interval [0,1]. 

The PDF of ܤሺߙ,   ሻ isߚ

 
௑݂ሺݔሻ ൌ

௫ഀషభሺଵି௫ሻഁషభ

஻ሺఈ,ఉሻ
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With mean,  
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ሾܺሿܧ  ൌ ఈ

ఈାఉ
	  

 

16-21 

and variance, 

ሺܺሻݎܸܽ   ൌ ఈఉ

ሺఈାఉሻమሺఈାఉାଵሻ
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The kth moment of ݏܤሺߙ,   ሻ isߚ

ሾܺ௞ሿܧ   ൌ ఈା௞ିଵ

ఈାఉା௞ିଵ
  ሾܺ௞ିଵሿܧ
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which is a recursive equation. 

16.1.5.2 The Four Parameter Beta Distribution 
The four parameter beta distribution,	4ܽݐ݁ܤሺߙ, ,ߚ ܽ, ܾሻ, is defined by four parameters: ߙ 
and ߚ  (which are the standard Beta shape parameters); and support parameters  ܽ and ܾ 
(which are the minimum and maximum bounds of the distribution, respectively).   

The PDF of		4ܽݐ݁ܤሺߙ, ,ߚ ܽ, ܾሻ is obtained through affine transformation of the standard 
beta distribution which changes the support from [0,1] to [a,b]. 
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With mode,  

 ݉ ൌ ቀ ఈିଵ

ఈାఉିଶ
ቁ ܾ ൅ ቀ ఉିଵ

ఈାఉିଶ
ቁ ܽ  
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mean,  

ሾܻሿܧ  ൌ ቀ ఈ

ఈାఉ
ቁ ܾ ൅ ቀ ఉ

ఈାఉ
ቁ ܽ  
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and variance,  

ሺܺሻݎܸܽ  ൌ ఈఉሺ௕ି௔ሻమ

ሺఈାఉሻమሺఈାఉାଵሻ
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16.1.5.3 The PERT Distribution 
The PERT distribution, ܲሺܽ,݉, ܾሻ, is a special case of the four parameter beta distribution 
whereby: 1) the parameters ܽ and ܾ are the maximum and minimum bounds of the 
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distribution; 2) the mode, ݉, is explicitly defined; and 3) the mean and variance obey strict 
definitions: 

Mean,  ߤ ൌ ሾܺሿܧ ൌ ௔ାସ௠ା௕

଺
 16-28 

Variance, ܸܽݎሺܺሻ ൌ
ሺ௕ି௔ሻమ

ଷ଺
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For 16-28 and 16-29 to hold true for the PERT distribution, the standard beta parameters, ߙ 
and	ߚ, are derived from ܲሺܽ,݉, ܾሻ by68 

ߙ   ൌ
ሺఓି௔ሻሺଶ௠ି௔ି௕ሻ

ሺ௠ିఓሻሺ௕ି௔ሻ
 and  

ߚ	 ൌ ఈሺ௕ିఓሻ

ሺఓି௔ሻ
 where 

ߤ ൌ ௔ାସ௠ା௕

଺
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For the symmetric case, the standard beta parameters ߙ and ߚ must satisfy this condition: 69 

If	݉ ൌ ௕ା௔

ଶ
, then  ߙ ൌ 3 and ߚ ൌ 3 (proof of this is provided in Appendix C – Derivations) 

16.1.6 Bivariate	Normal	Distribution	
The	 bivariate	 normal	 distribution	 is	 a	 joint	 distribution	 formed	 by	 two	 normal	
distributions	and	is	defined	by		

ܰ݅ܤ ቀሺߤଵ, ,ଶሻߤ ൫ߪଵ, ,ଶߪ ଵ,ଶ൯ቁߩ ൌ ௑݂భ,௑మሺݔଵ, ଶሻݔ ൌ
ଵ

ଶగఙభఙమටଵିఘభ,మ
మ
݁ିቄ

భ
మ
௪ቅ	;			

where	 ݓ ൌ ଵ

ଵିఘభ,మ
మ ൤ቀ௫భିఓభ

ఙభ
ቁ
ଶ
െ ଵ,ଶߩ2 ቀ

௫భିఓభ
ఙభ

ቁ ቀ௫మିఓమ
ఙమ

ቁ ൅ ቀ௫మିఓమ
ఙమ

ቁ
ଶ
൨,	

1,2ߩ ൌ  2ܺ,1ܺߩ
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16.1.7 Bivariate	Normal‐Lognormal	Distribution	
	

ܮܰ݅ܤ ቀሺߤଵ, ,ଶሻߤ ൫ߪଵ, ,ଶߪ ଵ,ଶ൯ቁߩ ൌ ௑݂భ,௑మሺݔଵ, ଶሻݔ ൌ
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ଶగఙభொమටଵିఘభ,మ
మ ௫మ

݁ିቄ
భ
మ
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where	ݓ ൌ ଵ

ଵିఘభ,మ
మ ൤ቀ௫భିఓభ

ఙభ
ቁ
ଶ
െ ଵ,ଶߩ2 ቀ

௫భିఓభ
ఙభ

ቁ ቀ௟௡
ሺ௫మሻି௉మ
ொమ

ቁ ൅ ቀ௟௡
ሺ௫మሻି௉మ
ொమ

ቁ
ଶ
൨,		
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68 From Vose Software ModelRisk Help, © Vose Software™ 2007. Reference Number: M-M0361-A 
69 Note the Beta Distribution article in Wikipedia, as accessed 13 November 2012, does not correctly specify 
these formulae and states that for the symmetric case that ߙ ൌ 4	and	ߚ ൌ 4, which are incorrect. 
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ଶܲ	 is	 defined	 by	 ܲ ൌ
ଵ

ଶ
݈݊ ቀ ఓర

ఓమାఙమ
ቁ, ܳଶ is defined by ܳ ൌ ට݈݊ ቀ1 ൅ ఙమ

ఓమ
ቁ, 	

1,2ߩ ൌ 2ܺ,1ܺߩ
ට݁ܳ2

2
െ1

ܳ2
  

16.1.8 Bivariate	Lognormal	Distribution	
	

ܮ݅ܤ ቀሺߤଵ, ,ଶሻߤ ൫ߪଵ, ,ଶߪ ଵ,ଶ൯ቁߩ ൌ ௑݂భ,௑మሺݔଵ, ଶሻݔ ൌ
ଵ

ଶగொభொమටଵିఘభ,మ
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where	ݓ ൌ ଵ
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ቁ
ଶ
൨,		

	 ଵܲand	 ଶܲ	 are	 defined	 by	 ܲ ൌ
ଵ

ଶ
݈݊ ቀ ఓర

ఓమାఙమ
ቁ, ܳଵ and ܳଶ are defined by 

ܳ ൌ ට݈݊ ቀ1 ൅ ఙమ

ఓమ
ቁ, 1,2ߩ ൌ

1
ܳ1ܳ2

݈݊൭1 ൅ 2ܺ,1ܺߩ
ට݁ܳ1

2
െ1ට݁ܳ2

2
െ1൱ 
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16.2 Appendix	B	–	Expectation	Operations	

16.2.1 Expectation	Properties	
If X is a PDF then the expected value of X is: 

 EሾXሿ ൌ   ௑ߤ
  

16-34 

The variance of X is: 

ሺܺሻݎܸܽ  ൌ ሾܺଶሿܧ െ ଶሾܺሿܧ ൌ ሾܺଶሿܧ െ   ௑ଶߤ
   

16-35 

The covariance of X and Y is:   

,ሺܺݒ݋ܥ  ܻሻ ൌ ௑௒ߪ ൌ ሾሺܺܧ െ ௑ሻሺܻߤ െ  ௒ሻሿ   16-36ߤ
,ሺܺݒ݋ܥ  ܻሻ ൌ  ௒  16-37ߪ௑ߪ௑,௒ߩ
,ሺܺݒ݋ܥ  ܻሻ ൌ ሾܻܺሿܧ െ ௒ߤ௑ߤ 16-38 
,ሺܺݒ݋ܥ  ܻሻ ൌ ,ሺܻݒ݋ܥ ܺሻ  16-39 

ሺܽܺݒ݋ܥ  ൅ ܾ, ܻܿ ൅ ݀ሻ ൌ ሺܽܿሻݒ݋ܥሺܺ, ܻሻ    16-40 
 If ܺ and ܻ are independent, then ݒ݋ܥሺܺ, ܻሻ ൌ 0 16-41 

        

ሾܻܺሿܧ  ൌ ௒ߪ௑ߪ௑,௒ߩ ൅  ௒   16-42ߤ௑ߤ
,ሺܺݎݎ݋ܥ  ܻሻ ൌ ௑,௒ߩ ൌ

ாሾ௑௒ሿିఓ೉ఓೊ
ఙ೉ఙೊ

  16-43 

 

ሺܽܧ  ൅ ܾܺሻ ൌ ܽ ൅ ሺܺሻܧܾ ൌ ܽ ൅  ௑  16-44ߤܾ
ሺܽݎܸܽ  ൅ ܾܺሻ ൌ ሺܾଶሻܸܽݎሺܺሻ     

 
16-45 

The ݇th moment of ܺ 

 
ሾܺ௞ሿܧ ൌ ቊ

∑ ௞ݔ ௑ܲሺݔሻ௑ , ݂݅ ܺ ݏ݅ ݁ݐ݁ݎܿݏ݅݀

׬ ௞ݔ ௑݂ሺݔሻ݀ݔ
ஶ
ିஶ , ݂݅ ܺ ݏ݅ ݏݑ݋ݑ݊݅ݐ݊݋ܿ

  
16-46 

   

 
ሻሿݔሾ݃ሺܧ ൌ ቊ

∑ ݃ሺݔሻ ௑ܲሺݔሻ௑ , ݂݅ ܺ ݏ݅ ݁ݐ݁ݎܿݏ݅݀

׬ ݃ሺݔሻ ௑݂ሺݔሻ݀ݔ
ஶ
ିஶ , ݂݅ ܺ ݏ݅ ݏݑ݋ݑ݊݅ݐ݊݋ܿ

  

  

16-47 

     

ሾܺܧ  ൅ ܻሿ ൌ ሾܺሿܧ ൅  ሾܻሿ  16-48ܧ
ሾܺܧ  െ ܻሿ ൌ ሾܺሿܧ െ  ሾܻሿ  16-49ܧ
ሾܺݎܸܽ  ൅ ܻሿ ൌ ሾܺሿݎܸܽ ൅ ሾܻሿݎܸܽ ൅ ,ሺܺݒ݋ܥ2 ܻሻ  16-50 
ሾܺݎܸܽ  െ ܻሿ ൌ ሾܺሿݎܸܽ ൅ ሾܻሿݎܸܽ െ ,ሺܺݒ݋ܥ2 ܻሻ  16-51 
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16.2.2 Expectation	Operations	

For the uniform case, where ௑݂ሺݔሻ ൌ
ଵ

ுି௅
 

୩൧ܺൣܧ ൌ න ୩ݔ ௑݂ሺݔሻ
ஶ

ିஶ
ݔ݀ ൌ

1
ܪ െ ܮ

න ୩ݔ
ஶ

ିஶ
ݔ݀ ൌ

1
ሾܪ െ ሿܮ

1
ሾk ൅ 1ሿ

ܪ୩ାଵหݔ
ܮ
ൌ
୩ାଵܪ െ ୩ାଵܮ

k ൅ 1ሺܪ െ ሻܮ
 

For the triangular case 

For the normal case (by definition), ݇ is defined as a positive integer.  In cases where ݇ is 
not an integer value, EൣX୩൧ is defined by a series of confluent hypergeometric equations. 

ሾܺ଴ሿܧ ൌ 1 

ሾܺଵሿܧ ൌ  ߤ

ሾܺଶሿܧ ൌ ଶߤ ൅  ଶߪ

ሾܺଷሿܧ ൌ ଷߤ ൅  ଶߪߤ3

ሾܺସሿܧ ൌ ସߤ ൅ ଶߪଶߤ6 ൅  ସߪ3

For the lognormal case from Garvey (2000), ܺൣܧ୩൧ is defined for all positive values of ݇. 

୩൧ܺൣܧ ൌ ݁ቀ௞௉ା
ଵ
ଶொ

మ௞మቁ 

 EൣX୩൧ ൌ
ଶ

ሺୌି୐ሻሺ୑ି୐ሻ
ቄ୑

ౡశమି୐ౡశమ

୩ାଶ
െ L

୑ౡశభି୐ౡశభ

୩ାଵ
ቅ ൅

ଶ

ሺୌି୐ሻሺୌି୑ሻ
ቄH

ୌౡశభି୑ౡశభ

୩ାଵ
െ

ୌౡశమି୑ౡశమ

୩ାଶ
ቅ  
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